
MATLAB
Machine Learning

—
Michael Paluszek
Stephanie Thomas

MATLAB Machine
Learning

���

Michael Paluszek

Stephanie Thomas

MATLAB Machine Learning

Michael Paluszek and Stephanie Thomas
New Jersey
USA

ISBN-13 (pbk): 978-1-4842-2249-2 ISBN-13 (electronic): 978-1-4842-2250-8
DOI 10.1007/978-1-4842-2250-8

Library of Congress Control Number: 2016963347

Copyright © 2017 by Michael Paluszek, Stephanie Thomas

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on
microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation,
computer software, or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an editorial fashion and to
the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as
such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither the
authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made.
The publisher makes no warranty, express or implied, with respect to the material contained herein.

Managing Director: Welmoed Spahr
Lead Editor: Steve Anglin
Technical Reviewers: Jonah Lissner, Joseph Mueller, and Derek Surka
Editorial Board: Steve Anglin, Pramila Balan, Laura Berendson, Aaron Black, Louise Corrigan, Jonathan

Gennick, Robert Hutchinson, Celestin Suresh John, Nikhil Karkal, James Markham, Susan McDermott,
Matthew Moodie, Natalie Pao, Gwenan Spearing

Coordinating Editor: Mark Powers
Copy Editor: Kristen Cassereau Ng
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or
visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer
Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use. eBook versions
and licenses are also available for most titles. For more information, reference our Special Bulk Sales-eBook Licensing
web page at www.apress.com/bulk-sales.

Any source code or other supplementary materials referenced by the author in this text are available to readers at
www.apress.com. For detailed information about how to locate your book’s source code, go to
www.apress.com/source-code/. Readers can also access source code at SpringerLink in the Supplementary
Material section for each chapter.

Printed on acid-free paper

mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:rights@apress.com
www.apress.com
www.apress.com
www.apress.com/source-code

For Marilyn and Matt.

Contents at a Glance

About the Authors . XV

About the Technical Reviewer . XVII

Introduction . XIX

�Part I Introduction to Machine Learning 1

�Chapter 1: An Overview of Machine Learning . 3

�Chapter 2: The History of Autonomous Learning . 17

�Chapter 3: Software for Machine Learning . 25

�Part II MATLAB Recipes for Machine Learning 33

�Chapter 4: Representation of Data for Machine Learning in MATLAB 35

�Chapter 5: MATLAB Graphics . 49

�Chapter 6: Machine Learning Examples in MATLAB . 85

�Chapter 7: Face Recognition with Deep Learning . 89

�Chapter 8: Data Classification . 113

�Chapter 9: Classification of Numbers Using Neural Networks 143

�Chapter 10: Kalman Filters . 169

�Chapter 11: Adaptive Control . 207

�Chapter 12: Autonomous Driving . 269

Index . 323

V

Contents

About the Authors . XV

About the Technical Reviewer . XVII

Introduction . XIX

�Part I Introduction to Machine Learning 1

�Chapter 1: An Overview of Machine Learning . 3
1.1 Introduction . 3
1.2 Elements of Machine Learning . 4

1.2.1 Data . 4
1.2.2 Models . 4
1.2.3 Training . 5

1.2.3.1 Supervised Learning . 5
1.2.3.2 Unsupervised Learning . 5
1.2.3.3 Semisupervised Learning . 5
1.2.3.4 Online Learning . 5

1.3 The Learning Machine . 6
1.4 Taxonomy of Machine Learning . 7
1.5 Autonomous Learning Methods . 8

1.5.1 Regression . 8
1.5.2 Neural Nets . 11
1.5.3 Support Vector Machines . 12
1.5.4 Decision Trees . 12
1.5.5 Expert System . 13

References . 15

�Chapter 2: The History of Autonomous Learning . 17
2.1 Introduction . 17
2.2 Artificial Intelligence . 17
2.3 Learning Control . 19
2.4 Machine Learning . 21
2.5 The Future . 22
References . 23

VII

CONTENTS

�Chapter 3: Software for Machine Learning . 25
3.1 Autonomous Learning Software . 25
3.2 Commercial MATLAB Software . 25

3.2.1 MathWorks Products . 25
3.2.1.1 Statistics and Machine Learning Toolbox 26
3.2.1.2 Neural Network Toolbox . 26
3.2.1.3 Computer Vision System Toolbox 26
3.2.1.4 System Identification Toolbox . 27

3.2.2 Princeton Satellite Systems Products . 27
3.2.2.1 Core Control Toolbox . 27
3.2.2.2 Target Tracking . 27

3.3 MATLAB Open-Source Resources . 28
3.3.1 Deep Learn Toolbox . 28
3.3.2 Deep Neural Network . 28
3.3.3 MatConvNet . 28

3.4 Products for Machine Learning . 28
3.4.1 R . 28
3.4.2 scikit-learn . 28
3.4.3 LIBSVM . 29

3.5 Products for Optimization . 29
3.5.1 LOQO . 29
3.5.2 SNOPT . 29
3.5.3 GLPK . 30
3.5.4 CVX . 30
3.5.5 SeDuMi . 30
3.5.6 YALMIP . 30

References . 31

�Part II MATLAB Recipes for Machine Learning 33

�Chapter 4: Representation of Data for Machine Learning in MATLAB 35
4.1 Introduction to MATLAB Data Types . 35

4.1.1 Matrices . 35
4.1.2 Cell Arrays . 36
4.1.3 Data Structures . 37
4.1.4 Numerics . 38
4.1.5 Images . 38
4.1.6 Datastore . 40
4.1.7 Tall Arrays . 41
4.1.8 Sparse Matrices . 42
4.1.9 Tables and Categoricals . 42
4.1.10 Large MAT-Files . 43

4.2 Initializing a Data Structure Using Parameters . 44
4.2.1 Problem . 44
4.2.2 Solution . 44
4.2.3 How It Works . 44

VIII

CONTENTS

4.3 Performing mapreduce on an Image Datastore . 46
4.3.1 Problem . 46
4.3.2 Solution . 46
4.3.3 How It Works . 46

4.4 Creating a Table from a File . 48
Summary . 48

�Chapter 5: MATLAB Graphics . 49
5.1 Two-Dimensional Line Plots . 49

5.1.1 Problem . 49
5.1.2 Solution . 49
5.1.3 How It Works . 50

5.2 General 2D Graphics . 54
5.2.1 Problem . 54
5.2.2 Solution . 54
5.2.3 How It Works . 54

5.3 Custom 2D Diagrams . 58
5.3.1 Problem . 58
5.3.2 Solution . 58
5.3.3 How It Works . 59

5.4 Three-Dimensional Box . 65
5.4.1 Problem . 65
5.4.2 Solution . 65
5.4.3 How It Works . 65

5.5 Draw a 3D Object with a Texture . 67
5.5.1 Problem . 67
5.5.2 Solution . 68
5.5.3 How It Works . 68

5.6 General 3D Graphics . 70
5.6.1 Problem . 70
5.6.2 Solution . 70
5.6.3 How It Works . 71

5.7 Building a Graphical User Interface . 72
5.7.1 Problem . 72
5.7.2 Solution . 72
5.7.3 How It Works . 72

Summary . 84

�Chapter 6: Machine Learning Examples in MATLAB . 85
6.1 Introduction . 85
6.2 Machine Learning . 85

6.2.1 Neural Networks . 85
6.2.2 Face Recognition . 86
6.2.3 Data Classification . 86

6.3 Control . 86
6.3.1 Kalman Filters . 86
6.3.2 Adaptive Control . 87

IX

CONTENTS

6.4 Artificial Intelligence . 87
6.4.1 Autonomous Driving and Target Tracking . 88

�Chapter 7: Face Recognition with Deep Learning . 89
7.1 Obtain Data Online: For Training a Neural Network . 92

7.1.1 Problem . 92
7.1.2 Solution . 93
7.1.3 How It Works . 93

7.2 Generating Data for Training a Neural Net . 93
7.2.1 Problem . 93
7.2.2 Solution . 93
7.2.3 How It Works . 93

7.3 Convolution . 97
7.3.1 Problem . 97
7.3.2 Solution . 98
7.3.3 How It Works . 98

7.4 Convolution Layer . 100
7.4.1 Problem . 100
7.4.2 Solution . 100
7.4.3 How It Works . 100

7.5 Pooling . 103
7.5.1 Problem . 103
7.5.2 Solution . 103
7.5.3 How It Works . 103

7.6 Fully Connected Layer . 104
7.6.1 Problem . 104
7.6.2 Solution . 104
7.6.3 How It Works . 104

7.7 Determining the Probability . 106
7.7.1 Problem . 106
7.7.2 Solution . 106
7.7.3 How It Works . 107

7.8 Test the Neural Network . 108
7.8.1 Problem . 108
7.8.2 Solution . 108
7.8.3 How It Works . 108

7.9 Recognizing an Image . 109
7.9.1 Problem . 109
7.9.2 Solution . 109
7.9.3 How It Works . 110

Summary . 111
Reference . 112

�Chapter 8: Data Classification . 113
8.1 Generate Classification Test Data . 113

8.1.1 Problem . 113
8.1.2 Solution . 113
8.1.3 How It Works . 113

X

CONTENTS

8.2 Drawing Decision Trees . 116
8.2.1 Problem . 116
8.2.2 Solution . 116
8.2.3 How It Works . 116

8.3 Decision Tree Implementation . 120
8.3.1 Problem . 120
8.3.2 Solution . 120
8.3.3 How It Works . 120

8.4 Implementing a Decision Tree . 124
8.4.1 Problem . 124
8.4.2 Solution . 124
8.4.3 How It Works . 124

8.5 Creating a Hand-Made Decision Tree . 129
8.5.1 Problem . 129
8.5.2 Solution . 129
8.5.3 How It Works . 129

8.6 Training and Testing the Decision Tree . 134
8.6.1 Problem . 134
8.6.2 Solution . 134
8.6.3 How It Works . 134

Summary . 140
Reference . 141

�Chapter 9: Classification of Numbers Using Neural Networks 143
9.1 Generate Test Images with Defects . 143

9.1.1 Problem . 143
9.1.2 Solution . 143
9.1.3 How It Works . 144

9.2 Create the Neural Net Tool . 146
9.2.1 Problem . 146
9.2.2 Solution . 147
9.2.3 How It Works . 147

9.3 Train a Network with One Output Node . 156
9.3.1 Problem . 156
9.3.2 Solution . 157
9.3.3 How It Works . 158

9.4 Testing the Neural Network . 161
9.4.1 Problem . 161
9.4.2 Solution . 161
9.4.3 How It Works . 161

9.5 Train a Network with Multiple Output Nodes . 162
9.5.1 Problem . 162
9.5.2 Solution . 162
9.5.3 How It Works . 162

Summary . 166
References . 167

XI

CONTENTS

�Chapter 10: Kalman Filters . 169
10.1 A State Estimator . 170

10.1.1 Problem . 170
10.1.2 Solution . 175
10.1.3 How It Works . 176
10.1.4 Conventional Kalman Filter . 180

10.2 Using the Unscented Kalman Filter for State
Estimation . 190
10.2.1 Problem . 190
10.2.2 Solution . 190
10.2.3 How It Works . 190

10.3 Using the UKF for Parameter Estimation . 197
10.3.1 Problem . 197
10.3.2 Solution . 197
10.3.3 How It Works . 197

Summary . 204
References . 205

�Chapter 11: Adaptive Control . 207
11.1 Self-Tuning: Finding the Frequency of an Oscillator . 208

11.1.1 Problem . 210
11.1.2 Solution . 210
11.1.3 How It Works . 210

11.2 Model Reference Adaptive Control . 217
11.2.1 Generating a Square Wave Input . 217

11.2.1.1 Problem . 217
11.2.1.2 Solution . 217
11.2.1.3 How It Works . 217

11.2.2 Implement Model Reference Adaptive Control 219
11.2.2.1 Problem . 219
11.2.2.2 Solution . 219
11.2.2.3 How It Works . 219

11.2.3 Demonstrate MRAC for a Rotor . 222
11.2.3.1 Problem . 222
11.2.3.2 Solution . 222
11.2.3.3 How It Works . 222

11.3 Longitudinal Control of an Aircraft . 225
11.3.1 Write the Differential Equations for the Longitudinal

Motion of an Aircraft . 225
11.3.1.1 Problem . 225
11.3.1.2 Solution . 225
11.3.1.3 How It Works . 225

11.3.2 Numerically Finding Equilibrium . 231
11.3.2.1 Problem . 231
11.3.2.2 Solution . 231
11.3.2.3 How It Works . 231

XII

CONTENTS

11.3.3 Numerical Simulation of the Aircraft . 233
11.3.3.1 Problem . 233
11.3.3.2 Solution . 233
11.3.3.3 How It Works . 233

11.3.4 Find a Limiting and Scaling function for a Neural Net 235
11.3.4.1 Problem . 235
11.3.4.2 Solution . 235
11.3.4.3 How It Works . 235

11.3.5 Find a Neural Net for the Learning Control . 236
11.3.5.1 Problem . 236
11.3.5.2 Solution . 236
11.3.5.3 How It Works . 236

11.3.6 Enumerate All Sets of Inputs . 240
11.3.6.1 Problem . 240
11.3.6.2 Solution . 240
11.3.6.3 How It Works . 241

11.3.7 Write a General Neural Net Function . 242
11.3.7.1 Problem . 242
11.3.7.2 Solution . 242
11.3.7.3 How It Works . 242

11.3.8 Implement PID Control . 247
11.3.8.1 Problem . 247
11.3.8.2 Solution . 247
11.3.8.3 How It Works . 247

11.3.9 Demonstrate PID control of Pitch for the Aircraft 251
11.3.9.1 Problem . 251
11.3.9.2 Solution . 251
11.3.9.3 How It Works . 251

11.3.10 Create the Neural Net for the Pitch Dynamics 256
11.3.10.1 Problem . 256
11.3.10.2 Solution . 256
11.3.10.3 How It Works . 256

11.3.11 Demonstrate the Controller in a Nonlinear Simulation 259
11.3.11.1 Problem . 259
11.3.11.2 Solution . 259
11.3.11.3 How It Works . 259

11.4 Ship Steering: Implement Gain Scheduling for Steering Control of a Ship 261
11.4.1 Problem . 261
11.4.2 Solution . 261
11.4.3 How It Works . 262

Summary . 267
References . 268

�Chapter 12: Autonomous Driving . 269
12.1 Modeling the Automobile Radar . 269

12.1.1 Problem . 269
12.1.2 How It Works . 269
12.1.3 Solution . 270

XIII

CONTENTS

12.2 Automobile Autonomous Passing Control . 274
12.2.1 Problem . 274
12.2.2 Solution . 274
12.2.3 How It Works . 274

12.3 Automobile Dynamics . 276
12.3.1 Problem . 276
12.3.2 How It Works . 276
12.3.3 Solution . 279

12.4 Automobile Simulation and the Kalman Filter . 281
12.4.1 Problem . 281
12.4.2 Solution . 281
12.4.3 How It Works . 281

12.5 Perform MHT on the Radar Data . 288
12.5.1 Problem . 288
12.5.2 Solution . 288
12.5.3 How It Works . 292
12.5.4 Hypothesis Formation . 301

12.5.4.1 Problem . 301
12.5.4.2 Solution . 301
12.5.4.3 How It Works . 301

12.5.5 Track Pruning . 308
12.5.5.1 Problem . 308
12.5.5.2 Solution . 308
12.5.5.3 How It Works . 308
12.5.5.4 Simulation . 312

Summary . 320
References . 322

Index . 323

XIV

About the Authors

Michael Paluszek is president of Princeton Satellite Systems, Inc.
(PSS) in Plainsboro, New Jersey. Mr. Paluszek founded PSS in 1992
to provide aerospace consulting services. He used MATLAB to develop
the control system and simulation for the Indostar-1 geosynchronous
communications satellite, resulting in the launch of Princeton Satellite
Systems’ first commercial MATLAB toolbox, the Spacecraft Control
Toolbox, in 1995. Since then he has developed toolboxes and software
packages for aircraft, submarines, robotics, and nuclear fusion propul-
sion, resulting in Princeton Satellite Systems’ current extensive product
line. He is currently leading a U.S. Army research contract for preci-
sion attitude control of small satellites and working with the Prince-

ton Plasma Physics Laboratory on a compact nuclear fusion reactor for energy generation and space
propulsion.

Prior to founding PSS, Mr. Paluszek was an engineer at GE Astro Space in East Windsor, NJ. At
GE he designed the Global Geospace Science Polar despun platform control system and led the design
of the GPS IIR attitude control system, the Inmarsat-3 attitude control systems, and the Mars Observer
Delta-V control system, leveraging MATLAB for control design. Mr. Paluszek also worked on the at-
titude determination system for the DMSP meteorological satellites. Mr. Paluszek flew communication
satellites on more than 12 satellite launches, including the GSTAR III recovery, the first transfer of a
satellite to an operational orbit using electric thrusters. At Draper Laboratory Mr. Paluszek worked on
the Space Shuttle, Space Station, and submarine navigation. His Space Station work included design of
control moment gyro-based systems for attitude control.

Mr. Paluszek received his bachelor’s degree in electrical engineering and master’s and engineer’s
degrees in aeronautics and astronautics from the Massachusetts Institute of Technology. He is the author
of numerous papers and has over a dozen U.S. patents. Mr. Paluszek is the coauthor of “MATLAB
Recipes” published by Apress.

XV

ABOUT THE AUTHORS

Stephanie Thomas is vice president of Princeton Satellite Systems, Inc.
in Plainsboro, New Jersey. She received her bachelor’s and master’s
degrees in aeronautics and astronautics from the Massachusetts Insti-
tute of Technology in 1999 and 2001, respectively. Ms. Thomas was
introduced to PSS’ Spacecraft Control Toolbox for MATLAB during a
summer internship in 1996 and has been using MATLAB for aerospace
analysis ever since. In her nearly 20 years of MATLAB experience, she
has developed many software tools including the Solar Sail Module for
the Spacecraft Control Toolbox; a proximity satellite operations toolbox
for the Air Force; collision monitoring Simulink blocks for the Prisma
satellite mission; and launch vehicle analysis tools in MATLAB and
Java. She has developed novel methods for space situation assessment
such as a numeric approach to assessing the general rendezvous prob-

lem between any two satellites implemented in both MATLAB and C++. Ms. Thomas has contributed
to PSS’ Attitude and Orbit Control textbook, featuring examples using the Spacecraft Control Toolbox
(SCT), and has written many software user guides. She has conducted SCT training for engineers from
diverse locales such as Australia, Canada, Brazil, and Thailand and has performed MATLAB consulting
for NASA, the Air Force, and the European Space Agency. Ms. Thomas is the coauthor of MATLAB
Recipes published by Apress. In 2016, Ms. Thomas was named a NASA NIAC Fellow for the project
“Fusion-Enabled Pluto Orbiter and Lander.”

XVI

About the Technical Reviewer

Jonah Lissner is a Research Scientist advancing PhD and DSc programs, scholarships, applied projects
and academic journal publications in Theoretical Physics, Power Engineering, Complex Systems, Meta-
materials, Geophysics, and Computation Theory. He has strong cognitive ability in empiricism and sci-
entific reason for the purpose of hypothesis building, theory learning, mathematical and axiomatic mod-
eling and testing for abstract problem-solving. His Dissertations, Research Publications and Projects,
CV, Journals, Blog, Novels, System are listed at http://Lissnerresearch.weebly.com.

Dr. Joseph Mueller specializes in control systems and trajectory opti-
mization. For his doctoral thesis, he developed optimal ascent trajecto-
ries for stratospheric airships. His active research interests include ro-
bust optimal control, adaptive control, applied optimization and plan-
ning for decision support systems, and intelligent systems to enable au-
tonomous operations of robotic vehicles.

Prior to joining SIFT in early 2014, Dr. Mueller worked at Prince-
ton Satellite Systems for 13 years. In that time, he served as the princi-
pal investigator for eight Small Business Innovative Research contracts
for NASA, Air Force, Navy and MDA. He has developed algorithms
for optimal guidance and control of both formation flying spacecraft

and high altitude airships, and developed a course of action planning tool for DoD communication
satellites.

In support of a research study for NASAGoddard Space Flight Center in 2005, Dr. Mueller developed
the Formation Flying Toolbox for Matlab, a commercial product that is now used at NASA, ESA, and
several universities and aerospace companies around the world.

In 2006, Dr. Mueller developed the safe orbit guidance mode algorithms and software for the Swedish
Prisma mission, which has successfully flown a 2-spacecraft formation flying mission since it launch in
2010.

Dr. Mueller also serves as an adjunct professor in the Aerospace Engineering & Mechanics Depart-
ment at the University of Minnesota, Twin Cities campus.

Derek Surka has over 20 years of professional experience in the aerospace field, specializing in space
situational awareness, guidance, navigation, and control, distributed system autonomy, and formation
flying. Mr. Surka has applied his expertise in astrodynamics, data fusion, estimation and control systems,
and software development to over 20 satellites and payloads for a variety of military, civil, and commer-
cial space customers. Mr. Surka is an active runner and triathlete and is a former National Mixed Curling
Champion.

XVII

http://Lissnerresearch.weebly.com

Introduction

Machine learning is becoming important in every discipline. It is used in engineering for autonomous
cars. It is used in finance for predicting the stock market. Medical professionals use it for diagnoses.
While many excellent packages are available from commercial sources and open-source repositories,
it is valuable to understand how these algorithms work. Writing your own algorithms is valuable both
because it gives you insight into the commercial and open-source packages and also because it gives you
the background to write your own custom Machine Learning software specialized for your application.

MATLAB® had its origins for that very reason. Scientists who needed to do operations on matrices
used numerical software written in FORTRAN. At the time, using computer languages required the
user to go through the write-compile-link-execute process that was time consuming and error prone.
MATLAB presented the user with a scripting language that allowed the user to solve many problems
with a few lines of a script that executed instantaneously. MATLAB has built-in visualization tools that
helped the user better understand the results. Writing MATLAB was a lot more productive and fun than
writing FORTRAN.

The goal of MATLAB Machine Learning is to help all users harness the power of MATLAB to do
a wide range of learning problems. This book has two parts. The first part, Chapters 1–3, provides
background on machine learning including learning control that is not often associated with machine
intelligence. We coin the term “autonomous learning” to embrace all of these disciplines.

The second part of the book, Chapters 4–12, shows complete MATLAB machine learning applica-
tions. Chapters 4–6 introduce the MATLAB features that make it easy to implement machine learning.
The remaining chapters give examples. Each chapter provides the technical background for the topic and
ideas on how you can implement the learning algorithm. Each example is implemented in a MATLAB
script supported by a number of MATLAB functions.

The book has something for everyone interested in machine learning. It also has material that will
allow people with interest in other technology areas to see how machine learning, and MATLAB, can
help them solve problems in their areas of expertise.

XIX

PART I

Introduction to Machine
Learning

CHAPTER 1

An Overview of Machine Learning

1.1 Introduction
Machine learning is a field in computer science where existing data are used to predict, or respond to,
future data. It is closely related to the fields of pattern recognition, computational statistics, and artificial
intelligence. Machine learning is important in areas like facial recognition, spam filtering, and others
where it is not feasible, or even possible, to write algorithms to perform a task.

For example, early attempts at spam filtering had the user write rules to determine what was spam.
Your success depended on your ability to correctly identify the attributes of the message that would
categorize an email as spam, such as a sender address or subject keyword, and the time you were willing
to spend to tweak your rules. This was only moderately successful as spam generators had little difficulty
anticipating people’s rules. Modern systems use machine learning techniques with much greater success.
Most of us are now familiar with the concept of simply marking a given message as “spam” or “not
spam,” and we take for granted that the email system can quickly learn which features of these emails
identify them as spam and prevent them from appearing in our inbox. This could now be any combination
of IP or email addresses and keywords in the subject or body of the email, with a variety of matching
criteria. Note how the machine learning in this example is data-driven, autonomous, and continuously
updating itself as you receive email and flag it.

In a more general sense, what does machine learning mean? Machine learning can mean using ma-
chines (computers and software) to gain meaning from data. It can also mean giving machines the ability
to learn from their environment. Machines have been used to assist humans for thousands of years. Con-
sider a simple lever, which can be fashioned using a rock and a length of wood, or the inclined plane.
Both of these machines perform useful work and assist people, but neither has the ability to learn. Both
are limited by how they are built. Once built, they cannot adapt to changing needs without human inter-
action. Figure 1.1 shows early machines that do not learn.

© Michael Paluszek, Stephanie Thomas 2017
M. Paluszek and S. Thomas,MATLAB Machine Learning, DOI 10.1007/978-1-4842-2250-8 1

3

CHAPTER 1 OVERVIEW

Figure 1.1: Simple machines that do not have the capability to learn.

Height

Height

length

Length 1

Length 2

Both of these machines do useful work and amplify the capabilities of people. The knowledge is
inherent in their parameters, which are just the dimensions. The function of the inclined plane is deter-
mined by its length and height. The function of the lever is determined by the two lengths and the height.
The dimensions are chosen by the designer, essentially building in the designer’s knowledge.

Machine learning involves memory that can be changed while the machine operates. In the case
of the two simple machines described above, knowledge is implanted in them by their design. In a
sense they embody the ideas of the builder; thus, they are a form of fixed memory. Learning versions of
these machines would automatically change the dimensions after evaluating how well the machines were
working. As the loads moved or changed, the machines would adapt. A modern crane is an example of a
machine that adapts to changing loads, albeit at the direction of a human being. The length of the crane
can be changed depending on the needs of the operator.

In the context of the software we will be writing in this book, machine learning refers to the process
by which an algorithm converts the input data into parameters it can use when interpreting future data.
Many of the processes used to mechanize this learning derive from optimization techniques and in turn
are related to the classic field of automatic control. In the remainder of this chapter we will introduce the
nomenclature and taxonomy of machine learning systems.

1.2 Elements of Machine Learning
This section introduces key nomenclature for the field of machine learning.

1.2.1 Data
All learning methods are data driven. Sets of data are used to train the system. These sets may be collected
by humans and used for training. The sets may be very large. Control systems may collect data from
sensors as the systems operate and use that to identify parameters—or train the system.

Note When collecting data from training, one must be careful to ensure that the time variation of
the system is understood. If the structure of a system changes with time, it may be necessary to discard
old data before training the system. In automatic control this is sometimes called a “forgetting factor” in
an estimator.

1.2.2 Models
Models are often used in learning systems. A model provides a mathematical framework for learning. A
model is human derived and based on human observations and experiences. For example, a model of

4

CHAPTER 1 OVERVIEW

a car, seen from above, might be that it is rectangular shaped with dimensions that fit within a standard
parking spot. Models are usually thought of as human derived and providing a framework for machine
learning. However, some forms of machine learning develop their own models without a human-derived
structure.

1.2.3 Training
A system that maps an input to an output needs training to do this in a useful way. Just as people need
to be trained to perform tasks, machine learning systems need to be trained. Training is accomplished by
giving the system an input and the corresponding output and modifying the structure (models or data)
in the learning machine so that mapping is learned. In some ways this is like curve fitting or regression.
If we have enough training pairs, then the system should be able to produce correct outputs when new
inputs are introduced. For example, if we give a face recognition system thousands of cat images and tell
it that those are cats, we hope that when it is given new cat images, it will also recognize them as cats.
Problems can arise when you don’t give it enough training sets or the training data are not sufficiently
diverse, that is, do not represent the full range of cats in this example.

1.2.3.1 Supervised Learning
Supervised learning means that specific training sets of data are applied to the system. The learning is
supervised in that the “training sets” are human derived. It does not necessarily mean that humans are
actively validating the results. The process of classifying the system’s outputs for a given set of inputs
is called labeling. That is, you explicitly say which results are correct or which outputs are expected for
each set of inputs.

The process of generating training sets can be time consuming. Great care must be taken to ensure
that the training sets will provide sufficient training so that when real-world data are collected the system
will produce correct results. They must cover the full range of expected inputs and desired outputs. The
training is followed by test sets to validate the results. If the results aren’t good, then the test sets are
cycled into the training sets and the process repeated.

A human example would be a ballet dancer trained exclusively in classical ballet technique. If she
were then asked to dance a modern dance, the results might not be as good as required because the dancer
did not have the appropriate training sets; her training sets were not sufficiently diverse.

1.2.3.2 Unsupervised Learning
Unsupervised learning does not utilize training sets. It is often used to discover patterns in data for which
there is no “right” answer. For example, if you used unsupervised learning to train a face identification
system, the system might cluster the data in sets, some of which might be faces. Clustering algorithms
are generally examples of unsupervised learning. The advantage of unsupervised learning is that you can
learn things about the data that you might not know in advance. It is a way of finding hidden structures
in data.

1.2.3.3 Semisupervised Learning
With the semisupervised approach, some of the data is in the form of labeled training sets and other data
are not [1]. In fact, typically only a small amount of the input data is labeled while most is not, as the
labeling may be an intensive process requiring a skilled human. The small set of labeled data is leveraged
to interpret the unlabeled data.

1.2.3.4 Online Learning
The system is continually updated with new data [1]. This is called “online” because many of the learning
systems use data collected online. It could also be called “recursive learning.” It can be beneficial to
periodically “batch” process data used up to a given time and then return to the online learning mode.
The spam filtering systems from the introduction utilize online learning.

5

CHAPTER 1 OVERVIEW

1.3 The Learning Machine
Figure 1.2 shows the concept of a learning machine. The machine absorbs information from the environ-
ment and adapts. Note that inputs may be separated into those that produce an immediate response and
those that lead to learning. In some cases they are completely separate. For example, in an aircraft a mea-
surement of altitude is not usually used directly for control. Instead, it is used to help select parameters
for the actual control laws. The data required for learning and regular operation may be the same, but in
some cases separate measurements or data will be needed for learning to take place. Measurements do not
necessarily mean data collected by a sensor such as radar or a camera. It could be data collected by polls,
stock market prices, data in accounting ledgers, or data gathered by any other means. The machine learn-
ing is then the process by which the measurements are transformed into parameters for future operation.

Figure 1.2: A learning machine that senses the environment and stores data in memory.

Measurements (Learning)

Learning

Parameters Actions

Machine

Actions
Environment

Measurements (Immediate Use)

Note that the machine produces output in the form of actions. A copy of the actions may be passed
to the learning system so that it can separate the effects of the machine actions from those of the envi-
ronment. This is akin to a feedforward control system, which can result in improved performance.

A few examples will clarify the diagram. We will discuss a medical example, a security system, and
spacecraft maneuvering.

A doctor might want to diagnose diseases more quickly. She would collect data on tests on patients
and then collate the results. Patient data might include age, height, weight, historical data like blood
pressure readings and medications prescribed, and exhibited symptoms. The machine learning algorithm
would detect patterns so that when new tests were performed on a patient the machine learning algorithm
would be able to suggest diagnoses or additional tests to narrow down the possibilities. As the machine
learning algorithm was used, it would hopefully get better with each success or failure. In this case the
environment would be the patients themselves. The machine would use the data to generate actions,
which would be new diagnoses. This system could be built in two ways. In the supervised learning
process, test data and known correct diagnoses would be used to train the machine. In an unsupervised
learning process, the data would be used to generate patterns that might not have been known before, and
these could lead to diagnosing conditions that would normally not be associated with those symptoms.

A security system might be put into place to identify faces. The measurements are camera images
of people. The system would be trained with a wide range of face images taken from multiple angles.
The system would then be tested with these known persons and its success rate validated. Those that are

6

CHAPTER 1 OVERVIEW

in the database should be readily identified and those that are not should be flagged as unknown. If the
success rate were not acceptable, more training might be needed or the algorithm itself might need to be
tuned. This type of face recognition is now common, used in Mac OS X’s “Faces” feature in Photos and
Facebook when “tagging” friends in photos.

For precision maneuvering of a spacecraft, the inertia of the spacecraft needs to be known. If the
spacecraft has an inertial measurement unit that can measure angular rates, the inertia matrix can be
identified. This is where machine learning is tricky. The torque applied to the spacecraft, whether by
thrusters or momentum exchange devices, is only known to a certain degree of accuracy. Thus, the
system identification system must sort out, if it can, the torque scaling factor from the inertia. The inertia
can only be identified if torques are applied. This leads to the issue of stimulation. A learning system
cannot learn if the system to be studied does not have known inputs, and those inputs must be sufficient
to stimulate the system so that the learning can be accomplished.

1.4 Taxonomy of Machine Learning
In this book we take a bigger view of machine learning than is normally done. We expand machine
learning to include adaptive and learning control. This field started off independently but now is adapting
technology and methods from machine learning. Figure 1.3 shows how we organize the technology of
machine learning. You will notice that we created a title that encompasses three branches of learning;

Figure 1.3: Taxonomy of machine learning. Optimization is part of the taxonomy because the results of
optimization can be new discoveries, such as a new type of spacecraft or aircraft trajectory.

Autonomous
Learning

Controls Artificial Intelligence Machine Learning

State
Estimation

Inductive
Learning

Pattern
Recognition

Adaptive
Control Expert

Systems
Data Mining

System
Identification Optimization

Optimal
Control

7

CHAPTER 1 OVERVIEW

we call the whole subject area “autonomous learning.” That means learning without human intervention
during the learning process.

There are three categories under autonomous learning. The first is control. Feedback control is used
to compensate for uncertainty in a system or to make a system behave differently than it would normally
behave. If there was no uncertainty, you wouldn’t need feedback. For example, if you are a quarterback
throwing a football at a running player, assume for a moment that you know everything about the up-
coming play. You know exactly where the player should be at a given time, so you can close your eyes,
count, and just throw the ball to that spot. Assuming the player has good hands, you would have a 100%
reception rate! More realistically, you watch the player, estimate the player’s speed, and throw the ball.
You are applying feedback to the problem. As stated, this is not a learning system. However, if now you
practice the same play repeatedly, look at your success rate and modify the mechanics and timing of your
throw using that information, you would have an adaptive control system, the second box from the top of
the control list. Learning in control takes place in adaptive control systems and also in the general area of
system identification. System identification is learning about a system. Optimal control may not involve
any learning. For example, what is known as full state feedback produces an optimal control signal but
does involve learning. In full state feedback the combination of model and data tells us everything we
need to know about the system. However, in more complex systems we can’t measure all the states and
don’t know the parameters perfectly, so some form of learning is needed to produce “optimal” results.

The second category of autonomous learning is artificial intelligence. Machine learning traces some
of its origins in artificial intelligence. Artificial intelligence is the area of study whose goal is to make
machines reason. While many would say the goal is “think like people,” this is not necessarily the case.
There may be ways of reasoning that are not similar to human reasoning but are just as valid. In the
classic Turing test, Turing proposes that the computer only needs to imitate a human in its output to be
a “thinking machine” regardless of how those outputs are generated. In any case, intelligence generally
involves learning, and so learning is inherent in many artificial intelligence technologies.

The third category is what many people consider truemachine learning. This is making use of data to
produce behavior that solves problems. Much of its background comes from statistics and optimization.
The learning process may be done once in a batch process or continually in a recursive process. For
example, in a stock buying package a developer might have processed stock data for several years,
say prior to 2008, and used that to decide which stocks to buy. That software might not have worked
well during the financial crash. A recursive program would continuously incorporate new data. Pattern
recognition and data mining fall into this category. Pattern recognition is looking for patterns in images.
For example, the early AI Blocks World software could identify a block in its field of view. It could find
one block in a pile of blocks. Data mining is taking large amounts of data and looking for patterns, for
example, taking stock market data and identifying companies that have strong growth potential.

1.5 Autonomous Learning Methods
This section introduces you to popular machine learning techniques. Some will be used in the examples
in this book. Others are available in MATLAB products and open-source products.

1.5.1 Regression
Regression is a way of fitting data to a model. A model can be a curve in multiple dimensions. The
regression process fits the data to the curve, producing a model that can be used to predict future data.
Some methods, such as linear regression or least squares, are parametric in that the number of parameters
to be fit are known. An example of linear regression is shown in the listing below and in Figure 1.4. This

8

CHAPTER 1 OVERVIEW

model was created by starting with the line y = x and adding noise to y. The line was recreated using a
least-squares fit via MATLAB’s pinv Pseudoinverse function.

Listing 1.1: Linear Regression

%% LinearRegression Script that demonstrates linear regression
% Fit a linear model to linear or quadratic data

%% Generate the data and perform the regression
% Input
x = linspace(0,1,500)';
n = length(x);

% Model a polynomial, y = ax2 + mx + b
a = 1.0; % quadratic - make nonzero for larger errors
m = 1.0; % slope
b = 1.0; % intercept
sigma = 0.1; % standard deviation of the noise
y0 = a*x.ˆ2 + m*x + b;
y = y0 + sigma*randn(n,1);

% Perform the linear regression using pinv
a = [x ones(n,1)];
c = pinv(a)*y;
yR = c(1)*x + c(2); % the fitted line

%% Generate plots
h = figure('name','Linear Regression');
h.Name = 'Linear Regression';
plot(x,y); hold on;
plot(x,yR,'linewidth',2);
grid on
xlabel('x');
ylabel('y');
title('Linear Regression');
legend('Data','Fit')

figure('Name','Regression Error')
plot(x,yR-y0);
grid on

We can solve the problem

Ax= b (1.1)

by taking the inverse of A if the length of x and b are the same:

x= A−1b (1.2)

9

CHAPTER 1 OVERVIEW

This works because A is a square matrix but only works if A is not singular. That is, it has a valid inverse.
If the length of x and that of b are the same, we can still find an approximation to x where x = pinv(A)b.
For example, in the first case below A is 2 by 2. In the second case, it is 3 by 2, meaning there are 3
elements of x and 2 of b.

>> inv(rand(2,2))

ans =

1.4518 -0.2018
-1.4398 1.2950

>> pinv(rand(2,3))

ans =

1.5520 -1.3459
-0.6390 1.0277
0.2053 0.5899

Figure 1.4: Learning with linear regression.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

y

data
fit

10

CHAPTER 1 OVERVIEW

The system learns the parameters, slope and y-intercept, from the data. The more data, the better the
fit. As it happens, our model

y= mx+b (1.3)

is correct. However, if it were wrong, the fit would be poor. This is an issue with model-based learning.
The quality of the results is highly dependent on the model. If you are sure of your model, then it should
be used. If not, other methods, such as unsupervised learning, may produce better results. For example, if
we add the quadratic term x2 we get the fit in Figure 1.5. Notice how the fit is not as good as we might like.

Figure 1.5: Learning with linear regression for a quadratic.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

0.5

1

1.5

2

2.5

3

3.5

y

data
fit

1.5.2 Neural Nets
A neural net is a network designed to emulate the neurons in a human brain. Each “neuron” has a mathe-
matical model for determining its output from its input; for example, if the output is a step function with
a value of 0 or 1, the neuron can be said to be “firing” if the input stimulus results in a 1 output. Networks
are then formed with multiple layers of interconnected neurons. Neural networks are a form of pattern
recognition. The network must be trained using sample data, but no a priori model is required. Networks
can be trained to estimate the output of nonlinear processes and the network then becomes the model.

Figure 1.6 displays a simple neural network that flows from left to right, with two input nodes and
one output node. There is one “hidden” layer of neurons in the middle. Each node has a set of numeric
weights that is tuned during training.

A “deep” neural network is a neural network with multiple intermediate layers between the input and
output. Neural nets are an active area of research.

11

CHAPTER 1 OVERVIEW

Figure 1.6: A neural net with one intermediate layer between the inputs on the left and the output on the
right.

1.5.3 Support Vector Machines
Support vector machines (SVMs) are supervised learning models with associated learning algorithms
that analyze data used for classification and regression analysis. An SVM training algorithm builds a
model that assigns examples into categories. The goal of an SVM is to produce a model, based on the
training data, that predicts the target values.

In SVMs nonlinear mapping of input data in a higher-dimensional feature space is done with kernel
functions. In this feature space a separation hyperplane is generated that is the solution to the classifica-
tion problem. The kernel functions can be polynomials, sigmoidal functions, and radial basis functions.
Only a subset of the training data is needed; these are known as the support vectors [2]. The training is
done by solving a quadratic program, which can be done with many numerical software programs.

1.5.4 Decision Trees
A decision tree is a tree-like graph used to make decisions. It has three kinds of nodes:

1. Decision nodes

2. Chance nodes

3. End nodes

You follow the path from the beginning to the end node. Decision trees are easy to understand and
interpret. The decision process is entirely transparent although very large decision trees may be hard to
follow visually. The difficulty is finding an optimal decision tree for a set of training data.

Two types of decision trees are classification trees, which produce categorical outputs, and regression
trees, which produce numeric outputs. An example of a classification tree is shown in Figure 1.7. This
helps an employee decide where to go for lunch. This tree has only decision nodes.

12

CHAPTER 1 OVERVIEW

Figure 1.7: A classification tree.

Restaurant

Hungry?

No Yes

Stay in Office Busy?

Yes No

Cafeteria

Have Credit
Card?

No Yes

Fast Food Fine Dining

This might be used by management to predict where they could find an employee at lunch time. The
decision are Hungry, Busy, and Have a Credit Card. From that the tree could by synthesized. However, if
there were other factors in the decision of employees, for example, it’s someone’s birthday, which would
result in the employee’s going to a restaurant, then the tree would not be accurate.

1.5.5 Expert System
A system uses a knowledge base to reason and present the user with a result and an explanation of
how it arrived at that result. Expert systems are also known as knowledge-based systems. The process
of building an expert system is called “knowledge engineering.” This involves a knowledge engineer,
someone who knows how to build the expert system, interviewing experts for the knowledge needed to
build the system. Some systems can induce rules from data, speeding the data acquisition process.

An advantage of expert systems, over human experts, is that knowledge from multiple experts can be
incorporated into the database. Another advantage is that the system can explain the process in detail so
that the user knows exactly how the result was generated. Even an expert in a domain can forget to check
certain things. An expert system will always methodically check its full database. It is also not affected
by fatigue or emotions.

Knowledge acquisition is a major bottleneck in building expert systems. Another issue is that the
system cannot extrapolate beyond what is programmed into the database. Care must be taken with using
an expert system because it will generate definitive answers for problems where there is uncertainty. The
explanation facility is important because someone with domain knowledge can judge the results from
the explanation.

13

CHAPTER 1 OVERVIEW

In cases where uncertainty needs to be considered, a probabilistic expert system is recommended. A
Bayesian network can be used as an expert system. A Bayesian network is also known as a belief network.
It is a probabilistic graphical model that represents a set of random variables and their dependencies. In
the simplest cases, a Bayesian network can be constructed by an expert. In more complex cases, it needs
to be generated from data from machine learning.

14

CHAPTER 1 OVERVIEW

References
[1] J. Grus. Data Science from Scratch. O’Reilly, 2015.
[2] Corinna Cortes and Vladimir Vapnik. Support-Vector Networks. Machine Learning, 20:273–297,

1995.

15

CHAPTER 2

The History of Autonomous
Learning

2.1 Introduction
In the previous chapter you were introduced to autonomous learning. You saw that autonomous learning
could be divided into the areas of machine learning, controls, and artificial intelligence (AI). In this chap-
ter you will learn how each area evolved. Automatic control predates AI. However, we are interested in
adaptive or learning control, which is a relatively new development and really began evolving around the
time that AI had its foundations. Machine learning is sometimes considered an offshoot of AI. However,
many of the methods used in machine learning came from different fields of study such as statistics and
optimization.

2.2 Artificial Intelligence
AI research began shortly after World War II [2]. Early work was based on knowledge of the structure of
the brain, propositional logic, and Turing’s theory of computation. Warren McCulloch and Walter Pitts
created a mathematical formulation for neural networks based on threshold logic. This allowed neural
network research to split into two approaches. One centered on biological processes in the brain and
the other on the application of neural networks to AI. It was demonstrated that any function could be
implemented through a set of such neurons and that a neural net could learn. In 1948, Norbert Wiener’s
book Cybernetics was published which described concepts in control, communications, and statistical
signal processing. The next major step in neural networks was Donald Hebb’s book, The Organization
of Behavior, connecting connectivity with learning in the brain. His book became a source of learning
and adaptive systems. Marvin Minsky and Dean Edmonds built the first neural computer in 1950.

In 1956, Allen Newell and Herbert Simon designed a reasoning program, the Logic Theorist (LT),
which worked nonnumerically. The first version was hand simulated using index cards. It could prove
mathematical theorems and even improve on human derivations. It solved 38 of the 52 theorems in Prin-
cipia Mathematica. LT employed a search tree with heuristics to limit the search. LT was implemented
on a computer using IPL, a programming language that led to Lisp.

Blocks World was one of the first attempts to demonstrate general computer reasoning. The Blocks
World was a micro world. A set of blocks would sit on a table, some sitting on other blocks. The AI
systems could rearrange blocks in certain ways. Blocks under other blocks could not be moved until
the block on top was moved. This is not unlike the Towers of Hanoi problem. The Blocks World was a
significant advance as it showed that a machine could reason at least in a limited environment. Computer
vision was introduced. Work began on implementing neural networks.

© Michael Paluszek, Stephanie Thomas 2017
M. Paluszek and S. Thomas,MATLAB Machine Learning, DOI 10.1007/978-1-4842-2250-8 2

17

CHAPTER 2 THE HISTORY OF AUTONOMOUS LEARNING

Figure 2.1: Towers of Hanoi. The disks must be moved from the first peg to the last without ever putting
a larger-diameter disk on top of a smaller-diameter disk.

Blocks World and Newell’s and Simon’s LT was followed up by the General Problem Solver (GPS).
It was designed to imitate human problem-solving methods. Within its limited class of puzzles it could
solve them much like a human. While GPS solved simple problems such as the Towers of Hanoi, Fig-
ure 2.1, it could not solve real-world problems because the search was lost in the combinatorial explosion.

In 1959, Herman Gelernter wrote the Geometry Theorem prover, which could prove theorems that
were quite tricky. The first game-playing programs were written at this time. In 1958, John McCarthy
invented the language Lisp (LISt Processing), which was to become a major AI language. It is now
available as Scheme and Common Lisp. Lisp was implemented only one year after FORTRAN. A typical
Lisp expression is

(defun sqrt-iter (guess x)
(if (good-enough-p guess x)

guess
(sqrt-iter (improve guess x) x)))

This computes a square root through recursion. Eventually, dedicated Lisp machines were built, but
they went out of favor when general-purpose processors became faster.

Time sharing was invented at the Massachusetts Institute of Technology (MIT) to facilitate AI re-
search. Professor McCarthy created a hypothetical computer program, Advice Taker, a complete AI
system that could embody general-world information. It would have used a formal language such as
predicate calculus. For example, it could come up with a route to the airport from simple rules. Marvin
Minsky arrived at MIT and began working on micro worlds. Within these limited domains, AI could
solve problems, such as closed-form integrals in calculus.

Minsky and Papert wrote the book Perceptrons, which was fundamental in the analysis of artificial
neural networks. The book contributed to the movement toward symbolic processing in AI. The book
noted that single neurons could not implement some logical functions such as exclusive-or and erro-
neously implied that multilayer networks would have the same issue. It was later found that three-layer
networks could implement such functions.

More challenging problems were tried in the 1960s. Limitations in the AI techniques became evident.
The first language translation programs had mixed results. Trying to solve problems by working through
massive numbers of possibilities (such as in chess) ran into computation problems. Mr. Paluszek (the
author) in Patrick Winston’s 6.034 class at MIT wrote a paper suggesting the use of pattern recognition
in chess to visualize board patterns much as a human player might. As it turned out, this was not the
approach taken to produce the champion computer chess programs of today.

18

CHAPTER 2 THE HISTORY OF AUTONOMOUS LEARNING

As more complex problems were addressed, this approach was not suitable and the number of possi-
bilities grew rapidly with increases in problem complexity. Multilayer neural networks were discovered
in the 1960s but were not really studied until the 1980s.

In the 1970s, self-organizing maps using competitive learning were introduced [2]. A resurgence in
neural networks happened in the 1980s. Knowledge-based systems were also introduced in the 1980s.
According to Jackson [3],

An expert system is a computer program that represents and reasons with knowledge of
some specialized subject with a view to solving problems or giving advice.

This included expert systems that could store massive amounts of domain knowledge. These could
also incorporate uncertainty in their processing. Expert systems are applied to medical diagnoses and
other problems. Unlike AI techniques up to this time, expert systems could deal with problems of realistic
complexity and attain high performance. They also explain their reasoning. This last feature is critical in
their operational use. Sometimes these are called knowledge-based systems. A well-known open-source
expert system is CLIPS. write out name

Back propagation for neural networks was reinvented in the 1980s, leading to renewed progress in
this field. Studies began both of human neural networks (i.e., the human brain) and of the creation of
algorithms for effective computational neural networks. This eventually led to deep learning networks in
machine learning applications.

Advances were made in the 1980s as AI began to apply rigorous mathematical and statistical anal-
ysis to develop algorithms. Hidden Markov models were applied to speech. Combined with massive
databases, they have resulted in vastly more robust speech recognition. Machine translation has also
improved. Data mining, the first form of machine learning as it is known today, was developed. Chess
programs improved initially through the use of specialized computers, such as IBM’s Deep Blue. With
the increase in processing power, powerful chess programs that are better than most human players are
now available on personal computers.

The Bayesian network formalism was invented to allow for the rigorous application of uncertainty
in reasoning problems. In the late 1990s, intelligent agents were introduced. Search engines, bots, and
website aggregators are examples of intelligent agents used on the Internet.

The state of the art of AI includes autonomous cars, speech recognition, planning and scheduling,
game playing, robotics, and machine translation. All of these are based on AI technology. They are
in constant use today. You can take a PDF document and translate it into any language using Google
translate. The translations are not perfect but are adequate for many uses. One certainly would not use
them to translate literature!

Recent advances in AI include IBM’s Watson. Watson is a question-answering computing system
with advanced natural language processing and information retrieval from massive databases. It defeated
champion Jeopardy players in 2011. It is currently being applied to medical problems.

2.3 Learning Control
Adaptive or intelligent control was motivated in the 1950s [1] by the problems of aircraft control. Control
systems of that time worked very well for linear systems. Aircraft dynamics could be linearized about a
particular speed. For example, a simple equation for total velocity in level flight is

m
dv
dt

= T − 1
2

ρCDSv
2 (2.1)

19

CHAPTER 2 THE HISTORY OF AUTONOMOUS LEARNING

This says the mass m times the change in velocity dv
dt equals the thrust T minus the drag. CD is the drag

coefficient and S is the wetted area (i.e., the area that causes drag). The thrust is used for control. This is
a nonlinear equation. We can linearize it around a velocity vs so that v= vδ + vs and get

m
dvδ
dt

= T −ρCDSvsvδ (2.2)

This equation is linear. We can control velocity with a simple thrust control law

T = Ts− cvδ (2.3)

where Ts = 1
2ρCDSv2s . c is the damping coefficient. ρ is the atmospheric density and is a nonlinear

function of altitude. For the linear control to work, the control must be adaptive. If we want to guarantee
a certain damping value, which is the quantity in parentheses,

m
dvδ
dt

=−(c+ρCDSvs)vδ (2.4)

we need to know ρ , CD, S, and vs. This approach leads to a gain-scheduling control system where we
measure the flight condition and schedule the linear gains based on where the aircraft is in the gain
schedule.

In the 1960s, progress was made on adaptive control. State-space theory was developed, which made
it easier to design multiloop control systems, that is, control systems that controlled more than one state
at a time with different control loops. The general space-space controller is

ẋ = Ax+Bu (2.5)

y = Cx+Du (2.6)

u = −Ky (2.7)

where A, B,C, andD are matrices. If A completely models the system and y contains all of the information
about the state vector x, then this system is stable. Full state feedback would be x = −Kx, where K can
be computed to have guaranteed phase and gain margins (that is, tolerance to delays and tolerance to
amplification errors). This was a major advance in control theory. Before this, multiloop systems had to
be designed separately and combined very carefully.

Learning control and adaptive control were found to be realizable from a common framework. The
Kalman filter, also known as linear quadratic estimation, was introduced.

Spacecraft required autonomous control since they were often out of contact with the ground or the
time delays were too long for effective ground supervision. The first digital autopilots were on the Apollo
spacecraft. Geosynchronous communications satellites were automated to the point where one operator
could fly a dozen satellites.

Advances in system identification, the process of just determining parameters of a system (such
as the drag coefficient above), were made. Adaptive control was applied to real problems. The F-111
aircraft had an adaptive control system. Autopilots have progressed from fairly simple mechanical pilot
augmentation systems to sophisticated control systems that can take off, cruise, and land under computer
control.

In the 1970s, proofs about adaptive control stability were made. Stability of linear control systems
was well established, but adaptive systems are inherently nonlinear. Universally stabilizing controllers
were studied. Progress was made in the robustness of adaptive control. Robustness is the ability of a
system to deal with changes in parameters that were assumed to be known, sometimes because of failures

20

CHAPTER 2 THE HISTORY OF AUTONOMOUS LEARNING

in the systems. It was in the 1970s that digital control became widespread, replacing traditional analog
circuits composed of transistors and operational amplifiers.

Adaptive controllers started to appear commercially in the 1980s. Most modern single-loop con-
trollers have some form of adaptation. Adaptive techniques were also found to be useful for tuning
controllers.

More recently there has been a melding of AI and control. Expert systems have been proposed that
determine what algorithms (not just parameters) to use depending on the environment. For example,
during a winged reentry of a glider the control system would use one system in orbit, a second at high
altitudes, a third during high Mach (Mach is the ratio of the velocity to the speed of sound) flight, and a
fourth at low Mach numbers and during landing.

2.4 Machine Learning
Machine learning started as a branch of AI. However, many techniques are much older. Thomas Bayes
created what’s known as Bayes’ theorem in 1763. Bayes’ theorem says

P(Ai|B) =
P(B|Ai)P(Ai)

∑P(B|Ai)
(2.8)

P(Ai|B) =
P(B|Ai)P(Ai)

P(B)

which is just the probability of Ai given B. This assumes that P(B) �= 0. In the Bayesian interpretation,
the theorem introduces the effect of evidence on belief. One technique, regression, was discovered by
Legendre in 1805 and Gauss in 1809.

As noted in the section on AI, modern machine learning began with data mining, which is the process
of getting new insights from data. In the early days of AI, there was considerable work on machine
learning from data. However, this lost favor and in the 1990s was reinvented as the field of machine
learning. The goal was to solve practical problems of pattern recognition using statistics. This was greatly
aided by the massive amounts of data available online along with the tremendous increase in processing
power available to developers. Machine learning is closely related to statistics.

In the early 1990s, Vapnik and coworkers invented a computationally powerful class of supervised
learning networks known as support vector machines (SVMs). These networks could solve problems of
pattern recognition, regression, and other machine learning problems.

A growing application of machine learning is autonomous driving. Autonomous driving makes use of
all aspects of autonomous learning including controls, AI, and machine learning. Machine vision is used
in most systems as cameras are inexpensive and provide more information than radar or sonar (which are
also useful). It isn’t possible to build really safe autonomous driving systems without learning through
experience. Thus, designers of such systems put their cars on the roads and collect experiences which
are used to fine-tune the system.

Other applications include high-speed stock trading and algorithms to guide investments. These are
under rapid development and are now available to the consumer. Data mining and machine learning are
used to predict events, both human and natural. Searches on the Internet have been used to track disease
outbreaks. If there are a lot of data—and the Internet makes gathering massive data easy—then you can
be sure that machine learning techniques are being applied to mine the data.

21

CHAPTER 2 THE HISTORY OF AUTONOMOUS LEARNING

2.5 The Future
Autonomous learning in all its branches is undergoing rapid development today. Many of the technolo-
gies are used operationally even in low-cost consumer technology. Virtually every automobile com-
pany in the world and many nonautomotive companies are working to perfect autonomous driving.
Military organizations are extremely interested in AI and machine learning. Combat aircraft today have
systems to take over from the pilot, for example, to prevent planes from crashing into the ground.

While completely autonomous systems are the goal in many areas, the meshing of human and ma-
chine intelligence is also an area of active research. Much AI research has been to study how the human
mind works. This work will allow machine learning systems to mesh more seamlessly with human be-
ings. This is critical for autonomous control involving people, but may also allow people to augment
their own abilities.

This is an exciting time for machine learning! We hope that this book helps you bring your own
advances to machine learning!

22

CHAPTER 2 THE HISTORY OF AUTONOMOUS LEARNING

References
[1] K. J. Åström and B. Wittenmark. Adaptive Control, Second Edition. Addison-Wesley, 1995.
[2] S. Haykin. Neural Networks. Prentice-Hall, 1999.
[3] P. Jackson. Introduction to Expert Systems, Third Edition. Addison-Wesley, 1999.
[4] S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach, Third Edition. Prentice-Hall,

2010.

23

CHAPTER 3

Software for Machine Learning

3.1 Autonomous Learning Software
There are many sources for machine learning software. Machine learning encompasses machine learning
software to help the user learn from data and software that helps machines learn and adapt to their
environment. This book gives you a sampling of software that you can use immediately. However, the
software is not designed for industrial applications. This chapter describes software that is available for
the MATLAB environment. Both professional and open-source MATLAB software is discussed. The
book may not cover every available package, as new packages are continually becoming available while
older packages may become obsolete.

This chapter includes software for what is conventionally called “machine learning.” These are the
statistics functions that help give us insight into data. These are often used in the context of “big data.” It
also includes descriptions of packages for other branches of autonomous learning systems such as system
identification. System identification is a branch of automatic control that learns about the systems under
control, allowing for better and more precise control.

The chapter, for completeness, also covers popular software that is MATLAB compatible but requires
extra steps to use it from within MATLAB. Examples include R, Python, and SNOPT. In all cases it is
straightforward to write MATLAB interfaces to these packages. Using MATLAB as a front end can
be very helpful and allow you to create integrated packages that include MATLAB, Simulink, and the
machine learning package of your choice.

You will note that we include optimization software. Optimization is a tool used as part of machine
learning to find the best or “optimal” parameters. We use it in this book in our decision tree chapter.

Don’t be upset if we didn’t include your favorite package, or your package! We apologize in advance!

3.2 Commercial MATLAB Software
3.2.1 MathWorks Products
The MathWorks sells several packages for machine learning. These are in the Machine Learning branch
of our taxonomy Figure 1.3. The MathWorks products provide high-quality algorithms for data analysis
along with graphics tools to visualize the data. Visualization tools are a critical part of any machine
learning system. They can be used for data acquisition, for example, for image recognition or as part of
systems for autonomous control of vehicles, or for diagnosis and debugging during development. All of
these packages can be integrated with each other and with other MATLAB functions to produce powerful
systems for machine learning. The most applicable toolboxes that we will discuss are

© Michael Paluszek, Stephanie Thomas 2017
M. Paluszek and S. Thomas,MATLAB Machine Learning, DOI 10.1007/978-1-4842-2250-8 3

25

CHAPTER 3 SOFTWARE FOR MACHINE LEARNING

• Statistics and Machine Learning Toolbox

• Neural Network Toolbox

• Computer Vision System Toolbox

• System Identification Toolbox

3.2.1.1 Statistics and Machine Learning Toolbox
The Statistics and Machine Learning Toolbox provides data analytics methods for gathering trends and
patterns from massive amounts of data. These methods do not require a model for analyzing the data.
The toolbox functions can be broadly divided into classification tools, regression tools, and clustering
tools.

Classification methods are used to place data into different categories. For example, data, in the form
of an image, might be used to classify an image of an organ as having a tumor. Classification is used for
handwriting recognition, credit scoring, and face identification. Classification methods include support
vector machines (SVMs), decision trees, and neural networks.

Regression methods let you build models from current data to predict future data. The models can
then be updated as new data become available. If the data are only used once to create the model, then
it is a batch method. A regression method that incorporates data as they become available is a recursive
method.

Clustering finds natural groupings in data. Object recognition is an application of clustering methods.
For example, if you want to find a car in an image, you look for data that are associated with the part of
an image that is a car. While cars are of different shapes and sizes, they have many features in common.

The toolbox has many functions to support these areas and many that do not fit neatly into these
categories. The Statistics and Machine Learning Toolbox is an excellent place to start for professional
tools that are seamlessly integrated into the MATLAB environment.

3.2.1.2 Neural Network Toolbox
The MATLAB Neural Network Toolbox is a comprehensive neural net toolbox that seamlessly inte-
grates with MATLAB. The toolbox provides functions to create, train, and simulate neural networks.
The toolbox includes convolutional neural networks and deep learning networks. Neural networks can
be computationally intensive because of the large numbers of nodes and associated weights, especially
during training. The Neural Network Toolbox allows you to distribute computation across multicore
processors and graphical processing units (GPUs) if you have the Parallel Computing Toolbox, another
MATLAB add-on. You can extend this even further to a network cluster of computers using MATLAB
Distributed Computing Server™. As with all MATLAB products, the Neural Network Toolbox provides
extensive graphics and visualization capabilities that make it easier to understand your results.

The Neural Network Toolbox is capable of handling large data sets. This could be gigabytes or
terabytes of data. This makes it suitable for industrial-strength problems and complex research. MAT-
LAB also provides videos, webinars, and tutorials, including a full suite of resources for applying deep
learning.

3.2.1.3 Computer Vision System Toolbox
TheMATLAB Computer Vision System Toolbox provides functions for developing computer vision sys-
tems. The toolbox provides extensive support for video processing but also includes functions for feature
detection and extraction. It also supports three-dimensional (3D) vision and can process information
from stereo cameras. 3D motion detection is supported.

26

CHAPTER 3 SOFTWARE FOR MACHINE LEARNING

3.2.1.4 System Identification Toolbox
The System Identification Toolbox provides MATLAB functions and Simulink blocks for constructing
mathematical models of systems. You can identify transfer functions from input/output data and perform
parameter identification for models. Both linear and nonlinear system identification is supported.

3.2.2 Princeton Satellite Systems Products
Several of our own commercial packages provide tools within the purview of autonomous learning.

3.2.2.1 Core Control Toolbox
The Core Control Toolbox provides the control and estimation functions of our Spacecraft Control Tool-
box with general industrial dynamics examples including robotics and chemical processing. The suite of
Kalman filter routines includes conventional filters, extended Kalman filters, and unscented Kalman fil-
ters (UKFs). The unscented filters have a fast sigma-point calculation algorithm. All of the filters can now
handle multiple measurement sources that can be changed dynamically. Add-ons for the Core Control
Toolbox include imaging and target tracking modules. Imaging includes lens models, image processing,
ray tracing, and image analysis tools.

3.2.2.2 Target Tracking
The target tracking module employs track-oriented multiple-hypothesis testing (MHT). Track-oriented
MHT is a powerful technique for assigning measurements to tracks of objects when the number of objects
is unknown or changing. It is absolutely essential for accurate tracking of multiple objects.

In many situations a sensor system must track multiple targets, like in rush-hour traffic. This leads
to the problem of associating measurements with objects, or tracks. This is a crucial element of any
practical tracking system.

The track-oriented approach recomputes the hypotheses using the newly updated tracks after each
scan of data is received. Rather than maintaining, and expanding, hypotheses from scan to scan, the
track-oriented approach discards the hypotheses formed on scan k− 1. The tracks that survive pruning
are propagated to the next scan k, where new tracks are formed, using the new observations, and reformed
into hypotheses. The hypothesis formation step is formulated as a mixed-integer linear program and
solved using GNU Linear Programming Kit (GLPK). Except for the necessity to delete some tracks based
upon low probability, no information is lost because the track scores, which are maintained, contain all
the relevant statistical data.

The MHTmodule uses a powerful track-pruning algorithm that does the pruning in one step. Because
of its speed, ad hoc pruning methods are not required, leading to more robust and reliable results. The
track management software is, as a consequence, quite simple.

The toolbox includes Kalman filters, extended Kalman filters, and UKFs. All of the Kalman filters
use a common code format with separate prediction and update functions. This allows the two steps to
be used independently. Each Kalman filter can handle multiple measurement sources and measurements
arriving at different times. All three Kalman filters can be used independently or as part of the MHT
system. The UKF automatically uses sigma points and does not require derivatives to be taken of the
measurement functions or linearized versions of the measurement models.

Interactive multiple-model (IMM) systems can also be used as part of the MHT system. IMM em-
ploys multiple dynamic models to facilitate tracking maneuvering objects. One model might involve
maneuvering while another models constant motion. Measurements are assigned to all of the models.
The IMM systems are based on jump Markovian systems.

27

CHAPTER 3 SOFTWARE FOR MACHINE LEARNING

3.3 MATLAB Open-Source Resources
MATLAB open-source tools are a great resource for implementing state-of-the-art machine learning.
Machine learning and convex optimization packages are available.

3.3.1 Deep Learn Toolbox
The Deep Learn Toolbox by Rasmus Berg Palm is a MATLAB toolbox for deep learning. It includes
deep belief nets, stacked autoencoders, convolutional neural nets, and other neural net functions. It is
available through the MathWorks File Exchange.

3.3.2 Deep Neural Network
The Deep Neural Network by Masayuki Tanaka provides deep learning tools of deep belief networks
of stacked restricted Boltzmann machines. It has functionality for both unsupervised and supervised
learning. It is available through the MathWorks File Exchange.

3.3.3 MatConvNet
MatConvNet implements convolutional neural networks for image processing. It includes a range of
pretrained networks for image processing functions.

3.4 Products for Machine Learning
There are many products, both open-source and commercial, for machine learning. We cover some of
the more popular open-source products. Both machine learning and convex optimization packages are
discussed.

3.4.1 R
R is open-source software for statistical computing. It compiles on MacOS, UNIX, and Windows. It
is similar to the Bell Labs S language developed by John Chambers and colleagues. It includes many
statistical functions and graphics techniques.

You can use R in batch mode from MATLAB using the system command. Write

system('R CMD BATCH inputfile outputfile');

This runs the code in inputfile and puts it into outputfile. You can then read the outputfile
into MATLAB.

3.4.2 scikit-learn
scikit-learn is a machine learning library for use in Python. It includes a wide variety of tools, including

1. Classification

2. Regression

3. Clustering

4. Dimensionality reduction

28

CHAPTER 3 SOFTWARE FOR MACHINE LEARNING

5. Model selection

6. Preprocessing

scikit-learn is well suited to a wide variety of data mining and data analysis.
MATLAB supports the reference implementation of Python, CPython. Mac and Linux users already

have Python installed. Windows users need to install a distribution.

3.4.3 LIBSVM
LIBSVM [3] is a library for SVMs. It has an extensive collection of tools for SVMs including extensions
by many users of LIBSVM. LIBSVM tools include distributed processing and multicore extensions.

3.5 Products for Optimization
Optimization tools often are used as part of machine learning systems. Optimizers minimize a cost given
a set of constraints on the variables that are optimized. The maximum or minimum value for a variable
is one type of constraint. Constraints and costs may be linear or nonlinear.

3.5.1 LOQO
LOQO [6] is a system for solving smooth constrained optimization problems available from Princeton
University. The problems can be linear or nonlinear, convex or nonconvex, constrained or unconstrained.
The only real restriction is that the functions defining the problem be smooth (at the points evaluated by
the algorithm). If the problem is convex, LOQO finds a globally optimal solution. Otherwise, it finds a
locally optimal solution near a given starting point.

Once you compile the mex-file interface to LOQO, you must pass it an initial guess and sparse
matrices for the problem definition variables. Youmay also pass in a function handle to provide animation
of the algorithm at each iteration of the solution.

3.5.2 SNOPT
SNOPT [4] is a software package for solving large-scale optimization problems (linear and nonlinear
programs) hosted at the University of California, San Diego. It is especially effective for nonlinear prob-
lems whose functions and gradients are expensive to evaluate. The functions should be smooth but need
not be convex. SNOPT is designed to take advantage of the sparsity of the Jacobian matrix, effectively
reducing the size of the problem being solved. For optimal control problems, the Jacobian is very sparse
because you have a matrix with rows and columns that span a large number of time points, but only
adjacent time points can have nonzero entries.

SNOPT makes use of nonlinear function and gradient values. The solution obtained will be a local
optimum (which may or may not be a global optimum). If some of the gradients are unknown, they will be
estimated by finite differences. Infeasible problems are treated methodically via elastic bounds. SNOPT
allows the nonlinear constraints to be violated and minimizes the sum of such violations. Efficiency
is improved in large problems if only some of the variables are nonlinear, or if the number of active
constraints is nearly equal to the number of variables.

29

CHAPTER 3 SOFTWARE FOR MACHINE LEARNING

3.5.3 GLPK
GLPK solves a variety of linear programming problems. It is part of the GNU project (https://www.gnu.
org/software/glpk/). The most well-known one solves the linear program

Ax= b (3.1)

y= cx (3.2)

where it is desired to find x that when multiplied by A equals b. c is the cost vector that when multiplied
by x gives the scalar cost of applying x. If x is the same length as b, the solution is

x= A−1b (3.3)

Otherwise, we can use GLPK to solve for x that minimizes y. GLPK can solve this problem and others
where x has to be an integer or even just 0 or 1.

3.5.4 CVX
CVX [2] is a MATLAB-based modeling system for convex optimization. CVX turns MATLAB into a
modeling language, allowing constraints and objectives to be specified using standard MATLAB expres-
sion syntax.

In its default mode, CVX supports a particular approach to convex optimization that we call disci-
plined convex programming. Under this approach, convex functions and sets are built up from a small
set of rules from convex analysis, starting from a base library of convex functions and sets. Constraints
and objectives that are expressed using these rules are automatically transformed to a canonical form and
solved. CVX can be used for free with solvers like SeDuMi or with a license from CVX Research with
commercial solvers.

3.5.5 SeDuMi
SeDuMi [5] is MATLAB software for optimization over second-order cones, currently hosted at Lehigh
University. It can handle quadratic constraints. SeDuMi was used in Acikmese [1]. SeDuMi stands for
Self-Dual Minimization. It implements the self-dual embedding technique over self-dual homogeneous
cones. This makes it possible to solve certain optimization problems in one phase. SeDuMi is available
as part of YALMIP and as a standalone package.

3.5.6 YALMIP
YALMIP is free MATLAB software by Johan Lofberg that provides an easy-to-use interface to other
solvers. It interprets constraints and can select the solver based on the constraints. SeDuMi and MAT-
LAB’s fmincon from the Optimization Toolbox are available solvers.

30

CHAPTER 3 SOFTWARE FOR MACHINE LEARNING

References
[1] Behcet Acikmese and Scott R. Ploen. Convex programming approach to powered descent guidance

for Mars landing. Journal of Guidance, Control, and Dynamics, 30(5):1353–1366, 2007.
[2] S. Boyd. CVX: MATLAB software for disciplined convex programming. http://cvxr.com/

cvx/, 2015.
[3] Chih-Chung Chang and Chih-Jen Lin. LIBSVM – A library for support vector machines.

https://www.csie.ntu.edu.tw/˜cjlin/libsvm/, 2015.
[4] Philip Gill, Walter Murray, and Michael Saunders. SNOPT 6.0 description. http://www.

sbsi-sol-optimize.com/asp/sol_products_snopt_desc.htm, 2013.
[5] Jos F. Sturm. Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmet-

ric cones. http://sedumi.ie.lehigh.edu/wp-content/sedumi-downloads/
usrguide.ps, 1998.

[6] R. J. Vanderbvei. LOQO user’s manual version 4.05. http://www.princeton.edu/

˜rvdb/tex/loqo/loqo405.pdf, September 2013.

31

http://cvxr.com/cvx/
http://cvxr.com/cvx/
https://www.csie.ntu.edu.tw/~cjlin/libsvm/
http://www.sbsi-sol-optimize.com/asp/sol_products_snopt_desc.htm
http://www.sbsi-sol-optimize.com/asp/sol_products_snopt_desc.htm
http://sedumi.ie.lehigh.edu/wp-content/sedumi-downloads/usrguide.ps
http://sedumi.ie.lehigh.edu/wp-content/sedumi-downloads/usrguide.ps
http://www.princeton.edu/~rvdb/tex/loqo/loqo405.pdf
http://www.princeton.edu/~rvdb/tex/loqo/loqo405.pdf

PART II

MATLAB Recipes for
Machine Learning

CHAPTER 4

Representation of Data for
Machine Learning in MATLAB

4.1 Introduction to MATLAB Data Types
4.1.1 Matrices
By default, all variables in MATLAB are double-precision matrices. You do not need to declare a type
for these variables. Matrices can be multidimensional and are accessed using 1-based indices via paren-
theses. You can address elements of a matrix using a single index, taken column-wise, or one index per
dimension. To create a matrix variable, simply assign a value to it, like this 2×2 matrix a:

>> a = [1 2; 3 4];
>> a(1,1)

1

>> a(3)
2

You can simply add, subtract, multiply, and divide matrices with no special syntax. The matrices
must be the correct size for the linear algebra operation requested. A transpose is indicated using a single
quote suffix, A’, and the matrix power uses the operator ˆ.

>> b = a'*a;
>> c = aˆ2;
>> d = b + c;

By default, every variable is a numerical variable. You can initialize matrices to a given size using
the zeros, ones, eye, or rand functions, which produce zeros, ones, identity matrices (ones on the
diagonal), and random numbers, respectively. Use isnumeric to identify numeric variables.

Table 4.1 summarizes some key functions for interacting with matrices.

© Michael Paluszek, Stephanie Thomas 2017
M. Paluszek and S. Thomas,MATLAB Machine Learning, DOI 10.1007/978-1-4842-2250-8 4

35

CHAPTER 4 DATA REPRESENTATION

Table 4.1: Key Functions for Matrices

Function Purpose
zeros Initialize a matrix to zeros
ones Initialize a matrix to ones
eye Initialize an identity matrix
rand, randn Initialize a matrix of random numbers
isnumeric Identify a matrix or scalar numeric value
isscalar Identify a scalar value (a 1×1 matrix)
size Return the size of the matrix

4.1.2 Cell Arrays
One variable type unique to MATLAB is cell arrays. This is really a list container, and you can store
variables of any type in elements of a cell array. Cell arrays can be multidimensional, just like matrices,
and are useful in many contexts.

Cell arrays are indicated by curly braces, {}. They can be of any dimension and contain any data,
including string, structures, and objects. You can initialize them using the cell function, recursively
display the contents using celldisp, and access subsets using parentheses just like for a matrix. A
short example is below.

>> c = cell(3,1);
>> c{1} = 'string';
>> c{2} = false;
>> c{3} = [1 2; 3 4];
>> b = c(1:2);
>> celldisp(b)
b{1} =
string

b{2} =
0

Using curly braces for access gives you the element data as the underlying type. When you access
elements of a cell array using parentheses, the contents are returned as another cell array, rather than
the cell contents. MATLAB help has a special section called Comma-Separated Lists that highlights the
use of cell arrays as lists. The code analyzer will also suggest more efficient ways to use cell arrays. For
instance,

Replace

a = {b{:} c};
with
a = [b {c}];

Cell arrays are especially useful for sets of strings, with many of MATLAB’s string search functions
optimized for cell arrays, such as strcmp.

Use iscell to identify cell array variables. Use deal to manipulate structure array and cell array
contents.

Table 4.2 summarizes some key functions for interacting with cell arrays.

36

CHAPTER 4 DATA REPRESENTATION

Table 4.2: Key Functions for Cell Arrays

Function Purpose
cell Initialize a cell array
cellstr Create cell array from a character array
iscell Identify a cell array
iscellstr Identify a cell array containing only strings
celldisp Recursively display the contents of a cell array

4.1.3 Data Structures
Data structures in MATLAB are highly flexible, leaving it up to the user to enforce consistency in fields
and types. You are not required to initialize a data structure before assigning fields to it, but it is a good
idea to do so, especially in scripts, to avoid variable conflicts.

Replace
d.fieldName = 0;

with

d = struct;
d.fieldName = 0;

In fact, we have found it generally a good idea to create a special function to initialize larger structures
that are used throughout a set of functions. This is similar to creating a class definition. Generating your
data structure from a function, instead of typing out the fields in a script, means you always start with
the correct fields. Having an initialization function also allows you to specify the types of variables and
provide sample or default data. Remember, since MATLAB does not require you to declare variable
types, doing so yourself with default data makes your code that much clearer.

TIP Create an initialization function for data structures.

You make a data structure into an array simply by assigning an additional copy. The fields must be
in the same order, which is yet another reason to use a function to initialize your structure. You can nest
data structures with no limit on depth.

d = MyStruct;
d(2) = MyStruct;

function d = MyStruct

d = struct;
d.a = 1.0;
d.b = 'string';

MATLAB now allows for dynamic field names using variables, that is, structName.(dynamic
Expression). This provides improved performance over getfield, where the field name is passed
as a string. This allows for all sorts of inventive structure programming. Take our data structure array in
the previous code snippet, and let’s get the values of field a using a dynamic field name; the values are
returned in a cell array.

>> field = 'a';
>> values = {d.(field)}

37

CHAPTER 4 DATA REPRESENTATION

values =

[1] [1]

Use isstruct to identify structure variables and isfield to check for the existence of fields.
Note that isempty will return false for a struct initialized with struct, even if it has no fields.

Table 4.3 provides key functions for structs.

Table 4.3: Key Functions for Structs

Function Purpose
struct Initialize a structure with or without fields
isstruct Identify a structure
isfield Determine if a field exists in a structure
fieldnames Get the fields of a structure in a cell array
rmfield Remove a field from a structure
deal Set fields in a structure to a value

4.1.4 Numerics
While MATLAB defaults to doubles for any data entered at the command line or in a script, you can
specify a variety of other numeric types, including single, uint8, uint16, uint32, uint64,
logical (i.e., an array of booleans). Use of the integer types is especially relevant to using large data
sets such as images. Use the minimum data type you need, especially when your data sets are large.

4.1.5 Images
MATLAB supports a variety of formats, including GIF, JPG, TIFF, PNG, HDF, FITS, and BMP. You can
read in an image directly using imread, which can determine the type automatically from the extension,
or fitsread. (FITS stands for Flexible Image Transport System and the interface is provided by the
CFITSIO library.) imread has special syntaxes for some image types, such as handling alpha channels
for PNG, so you should review the options for your specific images. imformats manages the file
format registry and allows you to specify handling of new user-defined types if you can provide read and
write functions.

You can display an image using either imshow, image, or imagesc, which scales the colormap
for the range of data in the image.

For example, we use a set of images of cats in Chapter 7, Face Recognition. If we look at the image
info for one of these sample images using imfinfo,

>> imfinfo('IMG_4901.JPG')
ans =

Filename: 'MATLAB/Cats/IMG_4901.JPG'
FileModDate: '28-Sep-2016 12:48:15'

FileSize: 1963302
Format: 'jpg'

FormatVersion: ''
Width: 3264

Height: 2448
BitDepth: 24

ColorType: 'truecolor'
FormatSignature: ''

38

CHAPTER 4 DATA REPRESENTATION

NumberOfSamples: 3
CodingMethod: 'Huffman'

CodingProcess: 'Sequential'
Comment: {}

Make: 'Apple'
Model: 'iPhone 6'

Orientation: 1
XResolution: 72
YResolution: 72

ResolutionUnit: 'Inch'
Software: '9.3.5'
DateTime: '2016:09:17 22:05:08'

YCbCrPositioning: 'Centered'
DigitalCamera: [1x1 struct]

GPSInfo: [1x1 struct]
ExifThumbnail: [1x1 struct]

and we view this image using imshow, it will publish a warning that the image is too big to fit on
the screen and that it is displayed at 33%. If we view it using image, there will be a visible set of axes.
image is useful for displaying other two-dimensional matrix data as individual elements per pixel. Both
functions return a handle to an image object; only the axes’ properties are different. Figure 4.1 shows the
resulting figures. Note the labeled axes on the right figure.

>> figure; hI = image(imread('IMG_2398_Zoom.png'))
hI =

Image with properties:

CData: [680x680x3 uint8]
CDataMapping: 'direct'

Show all properties

Figure 4.1: Image display options. A figure created using imshow is on the left and a figure using image
is on the right.

39

CHAPTER 4 DATA REPRESENTATION

Table 4.4 provides key images for interacting with images.

Table 4.4: Key Functions for Images

Function Purpose
imread Read an image in a variety of formats
imfinfo Gather information about an image file
imformats Determine if a field exists in a structure
imwrite Write data to an image file
image Display image from array
imagesc Display image data scaled to the current colormap
imshow Display an image, optimizing figure, axes, and image object properties,

and taking an array or a filename as an input
rgb2gray Write data to an image file
ind2rgb Convert index data to RGB
rgb2ind Convert RGB data to indexed image data
fitsread Read a FITS file
fitswrite Write data to a FITS file
fitsinfo Information about a FITS file returned in a data structure
fitsdisp Display FITS file metadata for all Header Data Units (HDUs) in the file

4.1.6 Datastore
Datastores allow you to interact with files containing data that are too large to fit in memory. There are
different types of datastores for tabular data, images, spreadsheets, databases, and custom files. Each
datastore provides functions to extract smaller amounts of data that do fit in memory for analysis. For
example, you can search a collection of images for those with the brightest pixels or maximum saturation
values. We will use our directory of cat images as an example.

>> location = pwd
location =
/Users/Shared/svn/Manuals/MATLABMachineLearning/MATLAB/Cats
>> ds = datastore(location)
ds =

ImageDatastore with properties:

Files: {
' .../Shared/svn/Manuals/MATLABMachineLearning/MATLAB/Cats/

IMG_0191.png';
' .../Shared/svn/Manuals/MATLABMachineLearning/MATLAB/Cats/

IMG_1603.png';
' .../Shared/svn/Manuals/MATLABMachineLearning/MATLAB/Cats/

IMG_1625.png'
... and 19 more

}
Labels: {}

ReadFcn: @readDatastoreImage

Once the datastore is created, you use the applicable class functions to interact with it. Datastores
have standard container-style functions like read, partition, and reset. Each type of datastore
has different properties. The DatabaseDatastore requires the Database Toolbox and allows you to
use SQL queries.

40

CHAPTER 4 DATA REPRESENTATION

MATLAB provides the MapReduce framework for working with out-of-memory data in datastores.
The input data can be any of the datastore types, and the output is a key-value datastore. The map function
processes the datastore input in chunks and the reduce function calculates the output values for each key.
mapreduce can be sped up by using it with the MATLAB Parallel Computing Toolbox, Distributed
Computer Server, or Compiler. Table 4.5 gives key functions for using datastores.

Table 4.5: Key Functions for Datastore

Function Purpose
datastore
read Read a subset of data from the datastore
readall Read all of the data in the datastore
hasdata Check to see if there is more data in the datastore
reset Check to see if there is more data in the datastore
partition Excerpt a portion of the datastore
numpartitions Estimate a reasonable number of partitions
ImageDatastore Datastore of a list of image files
TabularTextDatastore A collection of one or more tabular text files
SpreadsheetDatastore Datastore of spreadsheets
FileDatastore Datastore for files with a custom format, for which you provide a reader

function
KeyValueDatastore Datastore of key-value pairs
DatabaseDatastore Database connection, provides Database Toolbox

4.1.7 Tall Arrays
Tall arrays are new to release R2016b of MATLAB. They are allowed to have more rows than will fit
in memory. You can use them to work with datastores that might have millions of rows. Tall arrays
can use almost any MATLAB type as a column variable, including numeric data, cell arrays, strings,
datetimes, and categoricals. The MATLAB documentation provides a list of functions that support tall
arrays. Results for operations on the array are only evaluated when they are explicitly requested using the
gather function. The histogram function can be used with tall arrays and will execute immediately.

The MATLAB Statistic and Machine Learning Toolbox™, Database Toolbox, Parallel Computing
Toolbox, Distributed Computing Server, and Compiler all provide additional extensions for working with
tall arrays. For more information about this new feature, use the following topics in the documentation:

• Tall Arrays

• Analysis of Big Data with Tall Arrays

• Functions That Support Tall Arrays (AZ)

• Index and View Tall Array Elements

• Visualization of Tall Arrays

• Extend Tall Arrays with Other Products

• Tall Array Support, Usage Notes, and Limitations

41

CHAPTER 4 DATA REPRESENTATION

Table 4.6 gives key functions for using Tall Arrays.

Table 4.6: Key Functions for Tall Arrays

Function Purpose
tall Initialize a tall array
gather Execute the requested operations
summary Display summary information to the command line
head Access first rows of a tall array
tail Access last rows of a tall array
istall Check the type of the array to determine if it is tall
write Write the tall array to disk

4.1.8 Sparse Matrices
Sparse matrices are a special category of matrix in which most of the elements are zero. They appear com-
monly in large optimization problems and are used by many such packages. The zeros are “squeezed”
out and MATLAB stores only the nonzero elements along with index data such that the full matrix can
be recreated. Many regular MATLAB functions, such as chol or diag, preserve the sparseness of an
input matrix. Table 4.7 gives key functions for sparse matrices.

Table 4.7: Key Functions for Sparse Matrices

Function Purpose
sparse Create a sparse matrix from a full matrix or from a list of indices and

values
issparse Determine if a matrix is sparse
nnz Number of nonzero elements in a sparse matrix
spalloc Allocate nonzero space for a sparse matrix
spy Visualize a sparsity pattern
spfun Selectively apply a function to the nonzero elements of a sparse matrix
full Convert a sparse matrix to full form

4.1.9 Tables and Categoricals
Tables were introduced in release R2013 of MATLAB and allow tabular data to be stored with metadata
in one workspace variable. It is an effective way to store and interact with data that one might put in,
or import from, a spreadsheet. The table columns can be named, assigned units and descriptions, and
accessed as one would fields in a data structure, that is, T.DataName. See readtable on creating a
table from a file, or try out the Import Data button from the command window.

Categorical arrays allow for storage of discrete nonnumeric data, and they are often used within a
table to define groups of rows. For example, time data may have the day of the week, or geographic data
may be organized by state or county. They can be leveraged to rearrange data in a table using unstack.

You can also combine multiple data sets into single tables using join, innerjoin, and
outerjoin, which will be familiar to you if you have worked with databases.

Table 4.8 lists key functions for using tables.

42

CHAPTER 4 DATA REPRESENTATION

Table 4.8: Key Functions for Tables

Function Purpose
table Create a table with data in the workspace
readtable Create a table from a file
join Merge tables by matching up variables
innerjoin Join tables A and B retaining only the rows that match
outerjoin Join tables including all rows
stack Stack data from multiple table variables into one variable
unstack Unstack data from a single variable into multiple variables
summary Calculate and display summary data for the table
categorical Arrays of discrete categorical data
iscategorical Create a categorical array
categories List of categories in the array
iscategory Test for a particular category
addcats Add categories to an array
removecats Remove categories from an array
mergecats Merge categories

4.1.10 Large MAT-Files
You can access parts of a large MAT-file without loading the entire file into memory by using the
matfile function. This creates an object that is connected to the requested MAT-file without load-
ing it. Data are only loaded when you request a particular variable, or part of a variable. You can also
dynamically add new data to the MAT-file.

For example, we can load a MAT-file of neural net weights generated in a later chapter.

>> m = matfile('PitchNNWeights','Writable',true)
m =

matlab.io.MatFile

Properties:
Properties.Source: '/Users/Shared/svn/Manuals/MATLABMachineLearning/

MATLAB/PitchNNWeights.mat'
Properties.Writable: true

w: [1x8 double]

We can access a portion of the previously unloaded w variable, or add a new variable name, all using
this object m.

>> y = m.w(1:4)
y =

1 1 1 1
>> m.name = 'Pitch Weights'
m =

matlab.io.MatFile

Properties:
Properties.Source: '/Users/Shared/svn/Manuals/MATLABMachineLearning/

MATLAB/PitchNNWeights.mat'
Properties.Writable: true

43

CHAPTER 4 DATA REPRESENTATION

name: [1x13 char]
w: [1x8 double]

>> d = load('PitchNNWeights')
d =

w: [1 1 1 1 1 1 1 1]
name: 'Pitch Weights'

There are some limits to the indexing into unloaded data, such as struct arrays and sparse arrays. Also,
matfile requires MAT-files using version 7.3, which is not the default for a generic save operation
as of R2016b. You must either create the MAT-file using matfile to take advantage of these features
or use the -v7.3’ flag when saving the file.

4.2 Initializing a Data Structure Using Parameters
4.2.1 Problem
It’s always a good idea to use a special function to define a data structure you are using as a type in your
codebase, similar to writing a class but with less overhead. Users can then overload individual fields in
their code, but there is an alternative way to set many fields at once: an initialization function, which
can handle a parameter-pair input list. This allows you to do additional processing in your initialization
function. Also, your parameter string names can be more descriptive than you would choose to make
your field names.

4.2.2 Solution
The simplest way to implement the parameter pairs is using varargin and a switch statement. Alterna-
tively, you could write an inputParser, which allows you to specify required and optional inputs as
well as named parameters. In that case, you have to write separate or anonymous functions for validation
that can be passed to the inputParser, rather than just write out the validation in your code.

4.2.3 How It Works
We will use the data structure developed for the automobile simulation in Chapter 12 as an example. The
header lists the input parameters along with the input dimensions and units, if applicable.

%% AUTOMOBILEINITIALIZE Initialize the automobile data structure.
%
%% Form:
% d = AutomobileInitialize(varargin)
%
%% Description
% Initializes the data structure using parameter pairs.
%
%% Inputs
% varargin: ('parameter',value,...)
%
% 'mass' (1,1) (kg)
% 'steering angle' (1,1) (rad)
% 'position tires' (2,4) (m)
% 'frontal drag coefficient' (1,1)
% 'side drag coefficient' (1,1)
% 'tire friction coefficient' (1,1)
% 'tire radius' (1,1) (m)
% 'engine torque' (1,1) (Nm)

44

CHAPTER 4 DATA REPRESENTATION

% 'rotational inertia' (1,1) (kg-mˆ2)
% 'state' (6,1) [m;m;m/s;m/s;rad;rad/s]

The function first creates the data structure using a set of defaults and then handles the parameter
pairs entered by a user. After the parameters have been processed, two areas are calculated using the
dimensions and the height.

function d = AutomobileInitialize(varargin)

% Defaults
d.mass = 1513;
d.delta = 0;
d.r = [1.17 1.17 -1.68 -1.68;...

-0.77 0.77 -0.77 0.77];
d.cDF = 0.25;
d.cDS = 0.5;
d.cF = 0.01; % Ordinary car tires on concrete
d.radiusTire = 0.4572; % m
d.torque = d.radiusTire*200.0; % N
d.inr = 2443.26;
d.x = [0;0;0;0;0;0];
d.fRR = [0.013 6.5e-6];
d.dim = [1.17+1.68 2*0.77];
d.h = 2/0.77;
d.errOld = 0;
d.passState = 0;

n = length(varargin);

for k = 1:2:length(varargin)
switch lower(varargin{k})

case 'mass'
d.mass = varargin{k+1};

case 'steering angle'
d.delta = varargin{k+1};

case 'position tires'
d.r = varargin{k+1};

case 'frontal drag coefficient'
d.cDF = varargin{k+1};

case 'side drag coefficient'
d.cDS = varargin{k+1};

case 'tire friction coefficient'
d.cF = varargin{k+1};

case 'tire radius'
d.radiusTire = varargin{k+1};

case 'engine torque'
d.torque = varargin{k+1};

case 'rotational inertia'
d.inertia = varargin{k+1};

case 'state'
d.x = varargin{k+1};

case 'rolling resistance coefficients'
d.fRR = varargin{k+1};

45

CHAPTER 4 DATA REPRESENTATION

case 'height automobile'
d.h = varargin{k+1};

case 'side and frontal automobile dimensions'
d.dim = varargin{k+1};

end
end

% Processing
d.areaF = d.dim(2)*d.h;
d.areaS = d.dim(1)*d.h;

To perform the same tasks with inputParser, you add a addRequired, addOptional, or
addParameter call for every item in the switch statement. The named parameters require default
values. You can optionally specify a validation function; in the example below we use isNumeric to
limit the values to numeric data.

p = inputParser('FunctionName','AutomobileInitialize',... % throw errors as
from AutomobileInitialize

'PartialMatching',false); % disallow partial matches
cDF_Default = 0.25;
mass_Default = 1513;
addParameter(p,'mass',mass_Default,@isnumeric);
addParameter(p,'cDF',cDF_Default,@isnumeric);
parse(p,varargin{:});
d = p.Results;

In this case, the results of the parsed parameters are stored in a Results substructure.

4.3 Performing mapreduce on an Image Datastore
4.3.1 Problem
We discussed the datastore class in the introduction to the chapter. Now let’s use it to perform
analysis on the full set of cat images using mapreduce, which is scalable to very large numbers of
images.

4.3.2 Solution
We create the datastore by passing in the path to the folder of cat images. We also need to create a
map function and a reduce function, to pass into mapreduce. If you are using additional toolboxes like
the Parallel Computing Toolbox, you would specify the reduce environment using mapreducer.

4.3.3 How It Works
First, create the datastore using the path to the images.

>> imds = imageDatastore('MATLAB/Cats');
imds =

ImageDatastore with properties:

Files: {
' .../Shared/svn/Manuals/MATLABMachineLearning/MATLAB/Cats/

IMG_0191.png';

46

CHAPTER 4 DATA REPRESENTATION

' .../Shared/svn/Manuals/MATLABMachineLearning/MATLAB/Cats/
IMG_1603.png';

' .../Shared/svn/Manuals/MATLABMachineLearning/MATLAB/Cats/
IMG_1625.png'

... and 19 more
}

Labels: {}
ReadFcn: @readDatastoreImage

Second, we write the map function. This must generate and store the intermediate values that will be
processed by the reduce function. Each intermediate value must be stored as a key in the intermediate
key-value datastore using add. In this case, the map function will receive one image each time it is
called.

function catColorMapper(data, info, intermediateStore)

add(intermediateStore, 'Avg Red', struct('Filename', info.Filename, 'Val',
mean(mean(data(:,:,1)))));

add(intermediateStore, 'Avg Blue', struct('Filename', info.Filename, 'Val',
mean(mean(data(:,:,2)))));

add(intermediateStore, 'Avg Green', struct('Filename', info.Filename, 'Val',
mean(mean(data(:,:,3)))));

The reduce function will then receive the list of the image files from the datastore once for each key
in the intermediate data. It receives an iterator to the intermediate datastore as well as an output datastore.
Again, each output must be a key-value pair. The hasnext and getnext functions used are part of
the mapreduce ValueIterator class.

function catColorReducer(key, intermediateIter, outputStore)

% Iterate over values for each key
minVal = 255;
minImageFilename = '';
while hasnext(intermediateIter)

value = getnext(intermediateIter);

% Compare values to find the minimum
if value.Val < minVal

minVal = value.Val;
minImageFilename = value.Filename;

end
end

% Add final key-value pair
add(outputStore, ['Maximum ' key], minImageFilename);

47

CHAPTER 4 DATA REPRESENTATION

Finally, we call mapreduce using function handles to our two helper functions.

maxRGB = mapreduce(imds, @catColorMapper, @hueSaturationValueReducer);

* MAPREDUCE PROGRESS *

Map 0% Reduce 0%
Map 13% Reduce 0%
Map 27% Reduce 0%
Map 40% Reduce 0%
Map 50% Reduce 0%
Map 63% Reduce 0%
Map 77% Reduce 0%
Map 90% Reduce 0%
Map 100% Reduce 0%
Map 100% Reduce 33%
Map 100% Reduce 67%
Map 100% Reduce 100%

The results are stored in a MAT-file, for example, results 1 28-Sep-2016 16-28-38 347.
The store returned is a key-value store to this MAT-file, which in turn contains the store with the final
key-value results.

>> output = readall(maxRGB)
output =

Key Value
_______________ __
'Maximum Avg Red' '/MATLAB/Cats/IMG_1625.png'
'Maximum Avg Blue' '/MATLAB/Cats/IMG_4866.JPG'
'Maximum Avg Green' '/MATLAB/Cats/IMG_4866.JPG'

4.4 Creating a Table from a File

Summary
There are a variety of data containers in MATLAB to assist you in analyzing your data for machine
learning. If you have access to a computer cluster of one of the specialized computing toolboxes, you
have even more options. Table 4.9 gives a listing of the code presented in this chapter.

Table 4.9: Chapter Code Listing

File Description
AutomobileInitialize Data structure initialization example from Chapter 12
catReducer Image datastore used with mapreduce

48

CHAPTER 5

MATLAB Graphics

Plotting is used extensively in machine learning problems. MATLAB plots can be two or three dimen-
sional. The same data can be represented using many different types of plots.

5.1 Two-Dimensional Line Plots
5.1.1 Problem
You want a single function to generate two-dimensional (2D) line graphs, avoiding a long list of code for
the generation of each graphic.

5.1.2 Solution
Write a single function to take the data and parameter pairs to encapsulate the functionality of MAT-
LAB’s 2D line-plotting functions. An example of a plot created with a single line of code is shown in
Figure 5.1.

© Michael Paluszek, Stephanie Thomas 2017
M. Paluszek and S. Thomas,MATLAB Machine Learning, DOI 10.1007/978-1-4842-2250-8 5

49

CHAPTER 5 MATLAB GRAPHICS

Figure 5.1: PlotSet’s built-in demo.

0 100 200 300 400 500 600 700 800 900 1000

x

-1

-0.5

0

0.5

1

y

cos

A
B

0 100 200 300 400 500 600 700 800 900 1000

x

-1

-0.5

0

0.5

1

y

sin

5.1.3 How It Works
PlotSet generates 2D plots, including multiple plots on a page. This code processes varargin as
parameter pairs to set options. This makes it easy to expand the options.

%% PLOTSET Create two-dimensional plots from a data set.
%% Form
% h = PlotSet(x, y, varargin)
%
%% Decription
% Plot y vs x in one figure.
% If x has the same number of rows as y then each row of y is plotted
% against the corresponding row of x. If x has one row then all of the
% y vectors are plotted against those x variables.
%
% Accepts optional arguments that modify the plot parameters.
%
% Type PlotSet for a demo.
%
%% Inputs
% x (:,:) Independent variables
% y (:,:) Dependent variables
% varargin {} Optional arguments with values

50

CHAPTER 5 MATLAB GRAPHICS

% 'x label', 'y label', 'plot title', 'plot type'
% 'figure title', 'plot set', 'legend'
%
%% Outputs
% h (1,1) Figure handle

The function code is shown below. We supply default values for the x- and y-axis labels and the figure
name. The parameter pairs are handled in a switch statement. We are careful to use lower to compare
the parameter name in lowercase. The plotting is done in a subfunction called plotXY.

function h = PlotSet(x, y, varargin)

% Demo
if(nargin < 1)

Demo;
return;

end

% Defaults
nCol = 1;
n = size(x,1);
m = size(y,1);

yLabel = cell(1,m);
xLabel = cell(1,n);
plotTitle = cell(1,n);
for k = 1:m

yLabel{k} = 'y';
end
for k = 1:n

xLabel{k} = 'x';
plotTitle{k} = '';

end
figTitle = 'PlotSet';
plotType = 'plot';

plotSet = cell(1,m);
leg = cell(1,m);
for k = 1:m

plotSet{k} = k;
leg{k} = {};

end

% Handle input parameters
for k = 1:2:length(varargin)

switch lower(varargin{k})
case 'x label'

for j = 1:n
xLabel{j} = varargin{k+1};

end
case 'y label'

temp = varargin{k+1};
if(ischar(temp))

51

CHAPTER 5 MATLAB GRAPHICS

yLabel{1} = temp;
else

yLabel = temp;
end

case 'plot title'
if(iscell(varargin{k+1}))

plotTitle = varargin{k+1};
else

plotTitle{1} = varargin{k+1};
end

case 'figure title'
figTitle = varargin{k+1};

case 'plot type'
plotType = varargin{k+1};

case 'plot set'
plotSet = varargin{k+1};
m = length(plotSet);

case 'legend'
leg = varargin{k+1};

otherwise
fprintf(1,'%s is not an allowable parameter\n',varargin{k});

end
end

h = figure('name',figTitle);
% First path is for just one row in x
if(n == 1)

for k = 1:m
subplot(m,nCol,k);
j = plotSet{k};
plotXY(x,y(j,:),plotType);
xlabel(xLabel{1});
ylabel(yLabel{k});
if(length(plotTitle) == 1)

title(plotTitle{1})
else

title(plotTitle{k})
end
if(˜isempty(leg{k}))

legend(leg{k});
end
grid on

end
else

for k = 1:n
subplot(n,nCol,k);
j = plotSet{k};
plotXY(x(j,:),y(j,:),plotType);
xlabel(xLabel{k});
ylabel(yLabel{k});
if(length(plotTitle) == 1)

title(plotTitle{1})
else

52

CHAPTER 5 MATLAB GRAPHICS

title(plotTitle{k})
end
if(˜isempty(leg{k}))

legend(leg{k},'location','best');
end
grid on

end
end

%%% PlotSet>plotXY Implement different plot types
% log and semilog types are supported.
%
% plotXY(x,y,type)
function plotXY(x,y,type)

h = [];
switch type

case 'plot'
h = plot(x,y);

case {'log' 'loglog' 'log log'}
h = loglog(x,y);

case {'xlog' 'semilogx' 'x log'}
h = semilogx(x,y);

case {'ylog' 'semilogy' 'y log'}
h = semilogy(x,y);

otherwise
error('%s is not an available plot type',type);

end

if(˜isempty(h))
color = 'rgbc';
lS = {'-' '--' ':' '-.'};
j = 1;
for k = 1:length(h)

set(h(k),'col',color(j),'linestyle',lS{j});
j = j + 1;
if(j == 5)

j = 1;
end

end
end

%%% PlotSet>Demo
function Demo

x = linspace(1,1000);
y = [sin(0.01*x);cos(0.01*x);cos(0.03*x)];
disp('PlotSet: One x and two y rows')
PlotSet(x, y, 'figure title', 'PlotSet Demo',...

'plot set',{[2 3], 1},'legend',{{'A' 'B'},{}},'plot title',{'cos','sin'
});

53

CHAPTER 5 MATLAB GRAPHICS

The example in Figure 5.1 is generated by a dedicated demo function at the end of the PlotSet
function. This demo shows several of the features of the function. These include

1. Multiple lines per graph

2. Legends

3. Plot titles

4. Default axis labels

Using a dedicated demo subfunction is a clean way to provide a built-in example of a function, and it is
especially important in graphics functions to provide an example of what the plot should look like. The
code is shown below.

j = 1;
for k = 1:length(h)

set(h(k),'col',color(j),'linestyle',lS{j});
j = j + 1;
if(j == 5)

j = 1;
end

end
end

5.2 General 2D Graphics
5.2.1 Problem
You want to represent a 2D data set in different ways.

5.2.2 Solution
Write a script to show MATLAB’s different 2D plot types. In our example we use subplots within one
figure to help reduce figure proliferation.

5.2.3 How It Works
Use the NewFigure function to create a new figure window with a suitable name. Then run the follow-
ing script.

NewFigure('Plot Types')
x = linspace(0,10,10);
y = rand(1,10);

subplot(4,1,1);
plot(x,y);
subplot(4,1,2);
bar(x,y);
subplot(4,1,3);
barh(x,y);
subplot(4,1,4);
pie(y)

Four plot types are shown that are helpful in displaying 2D data. One is the 2D line plot, the same as
is used in PlotSet. The middle two are bar charts. The final is a pie chart. Each gives you different
insight into the data. Figure 5.2 shows the plot types.

54

CHAPTER 5 MATLAB GRAPHICS

Figure 5.2: Four different types of MATLAB 2D plots.

There are many MATLAB functions for making these plots more informative. You can

• Add labels.

• Add grids.

• Change font types and sizes.

• Change the thickness of lines.

• Add legends.

• Change axis limits.

The last item requires looking at the axis properties. Here are the properties for the last plot—the list
is very long! gca is the handle to the current axis.

>> get(gca)
ALim: [0 1]

ALimMode: 'auto'
ActivePositionProperty: 'position'

AmbientLightColor: [1 1 1]
BeingDeleted: 'off'

Box: 'off'
BoxStyle: 'back'

BusyAction: 'queue'
ButtonDownFcn: ''

CLim: [1 10]

55

CHAPTER 5 MATLAB GRAPHICS

CLimMode: 'auto'
CameraPosition: [0 0 19.6977]

CameraPositionMode: 'auto'
CameraTarget: [0 0 0]

CameraTargetMode: 'auto'
CameraUpVector: [0 1 0]

CameraUpVectorMode: 'auto'
CameraViewAngle: 6.9724

CameraViewAngleMode: 'auto'
Children: [20x1 Graphics]
Clipping: 'on'

ClippingStyle: '3dbox'
Color: [1 1 1]

ColorOrder: [7x3 double]
ColorOrderIndex: 1

CreateFcn: ''
CurrentPoint: [2x3 double]

DataAspectRatio: [1 1 1]
DataAspectRatioMode: 'manual'

DeleteFcn: ''
FontAngle: 'normal'
FontName: 'Helvetica'
FontSize: 10

FontSmoothing: 'on'
FontUnits: 'points'

FontWeight: 'normal'
GridAlpha: 0.1500

GridAlphaMode: 'auto'
GridColor: [0.1500 0.1500 0.1500]

GridColorMode: 'auto'
GridLineStyle: '-'

HandleVisibility: 'on'
HitTest: 'on'

Interruptible: 'on'
LabelFontSizeMultiplier: 1.1000

Layer: 'bottom'
LineStyleOrder: '-'

LineStyleOrderIndex: 1
LineWidth: 0.5000

MinorGridAlpha: 0.2500
MinorGridAlphaMode: 'auto'

MinorGridColor: [0.1000 0.1000 0.1000]
MinorGridColorMode: 'auto'
MinorGridLineStyle: ':'

NextPlot: 'replace'
OuterPosition: [0 0.0706 1 0.2011]

Parent: [1x1 Figure]
PickableParts: 'visible'

PlotBoxAspectRatio: [1.2000 1.2000 1]
PlotBoxAspectRatioMode: 'manual'

Position: [0.1300 0.1110 0.7750 0.1567]
Projection: 'orthographic'

56

CHAPTER 5 MATLAB GRAPHICS

Selected: 'off'
SelectionHighlight: 'on'

SortMethod: 'childorder'
Tag: ''

TickDir: 'in'
TickDirMode: 'auto'

TickLabelInterpreter: 'tex'
TickLength: [0.0100 0.0250]
TightInset: [0 0.0405 0 0.0026]

Title: [1x1 Text]
TitleFontSizeMultiplier: 1.1000

TitleFontWeight: 'bold'
Type: 'axes'

UIContextMenu: [0x0 GraphicsPlaceholder]
Units: 'normalized'

UserData: []
View: [0 90]

Visible: 'off'
XAxis: [1x1 NumericRuler]

XAxisLocation: 'bottom'
XColor: [0.1500 0.1500 0.1500]

XColorMode: 'auto'
XDir: 'normal'

XGrid: 'off'
XLabel: [1x1 Text]

XLim: [-1.2000 1.2000]
XLimMode: 'manual'

XMinorGrid: 'off'
XMinorTick: 'off'

XScale: 'linear'
XTick: [-1 0 1]

XTickLabel: {3x1 cell}
XTickLabelMode: 'auto'

XTickLabelRotation: 0
XTickMode: 'auto'

YAxis: [1x1 NumericRuler]
YAxisLocation: 'left'

YColor: [0.1500 0.1500 0.1500]
YColorMode: 'auto'

YDir: 'normal'
YGrid: 'off'

YLabel: [1x1 Text]
YLim: [-1.2000 1.2000]

YLimMode: 'manual'
YMinorGrid: 'off'
YMinorTick: 'off'

YScale: 'linear'
YTick: [-1 0 1]

YTickLabel: {3x1 cell}
YTickLabelMode: 'auto'

YTickLabelRotation: 0
YTickMode: 'auto'

57

CHAPTER 5 MATLAB GRAPHICS

ZAxis: [1x1 NumericRuler]
ZColor: [0.1500 0.1500 0.1500]

ZColorMode: 'auto'
ZDir: 'normal'

ZGrid: 'off'
ZLabel: [1x1 Text]

ZLim: [-1 1]
ZLimMode: 'auto'

ZMinorGrid: 'off'
ZMinorTick: 'off'

ZScale: 'linear'
ZTick: [-1 0 1]

ZTickLabel: ''
ZTickLabelMode: 'auto'

ZTickLabelRotation: 0
ZTickMode: 'auto'

Every single one of these can be changed by using the set function:

set(gca,'YMinorGrid','on','YGrid','on')

This uses parameter pairs just like PlotSet. In this list children are pointers to the children of the
axes. You can access those using get and change their properties using set.

5.3 Custom 2D Diagrams
5.3.1 Problem
Many machine learning algorithms benefit from 2D diagrams such as tree diagrams, to help the user
understand the results and the operation of the software. Such diagrams, automatically generated by
the software, are an essential part of learning systems. This section gives an example of how to write
MATLAB code for a tree diagram.

5.3.2 Solution
Our solution is to use MATLAB patch function to automatically generate the blocks, and use line
to generate connecting lines. Figure 5.3 shows the resulting hierarchical tree diagram. The circles are in
rows and each row is labeled.

58

CHAPTER 5 MATLAB GRAPHICS

Figure 5.3: A custom tree diagram.

Row 1 1

Row 2 1 2 3

Row 3 1 4 2 5 6 7

Row 4 1 8 4 2 9 10 11 12

5.3.3 How It Works
Tree diagrams are very useful for machine learning. This function generates a hierarchical tree diagram
with the nodes as circles with text within each node. The graphics functions used in this function are

1. line

2. patch

3. text

The data needed to draw the tree are contained in a data structure, which is documented in the header.
Each node has a parent field. This information is sufficient to make the connections. The node data are
entered as a cell array.

%% TreeDiagram Tree diagram plotting function.
%% Description
% Generates a tree diagram from hierarchical data.
%
% Type TreeDiagram for a demo.
%
% w is optional the defaults are:
%
% .name = 'Tree';
% .width = 400;
% .fontName = 'Times';
% .fontSize = 10;
% .linewidth = 1;
% .linecolor = 'r';
%
%--
%% Form:
% TreeDiagram(n, w, update)
%
%% Inputs

59

CHAPTER 5 MATLAB GRAPHICS

% n {:} Nodes
% .parent (1,1) Parent
% .name (1,1) Number of observation
% .row (1,1) Row number
% w (.) Diagram data structure
% .name (1,:) Tree name
% .width (1,1) Circle width
% .fontName (1,:) Font name
% .fontSize (1,1) Font size
% update (1,1) If entered and true update an existing plot

The code is shown below. The function stores a figure handle in a persistent variable so that the same
figure can be updated with subsequent calls, if desired. The last input, a boolean, enables this behavior
to be turned on and off.

function TreeDiagram(n, w, update)

persistent figHandle

% Demo
%-----
if(nargin < 1)

Demo
return;

end

% Defaults
%---------
if(nargin < 2)

w = [];
end
if(nargin < 3)

update = false;
end

if(isempty(w))
w.name = 'Tree';
w.width = 1200;
w.fontName = 'Times';
w.fontSize = 10;
w.linewidth = 1;
w.linecolor = 'r';

end

% Find row range
%----------------
m = length(n);
rowMin = 1e9;
rowMax = 0;

60

CHAPTER 5 MATLAB GRAPHICS

for k = 1:m
rowMin = min([rowMin n{k}.row]);
rowMax = max([rowMax n{k}.row]);

end

nRows = rowMax - rowMin + 1;
row = rowMin:rowMax;
rowID = cell(nRows,1);

% Determine which nodes go with which rows
%--
for k = 1:nRows

for j = 1:m
if(n{j}.row == row(k))

rowID{k} = [rowID{k} j];
end

end
end

% Determine the maximum number of circles at the last row
%---
width = 3*length(rowID{nRows})*w.width;

% Draw the tree
%--------------
if(˜update)

figHandle = NewFigure(w.name);
else

clf(figHandle)
end

figure(figHandle);
set(figHandle,'color',[1 1 1]);
dY = width/(nRows+2);
y = (nRows+2)*dY;
set(gca,'ylim',[0 (nRows+1)*dY]);
set(gca,'xlim',[0 width]);
for k = 1:nRows

label = sprintf('Row %d',k);

text(0,y,label,'fontname',w.fontName,'fontsize',w.fontSize);
x = 4*w.width;
for j = 1:length(rowID{k})

node = rowID{k}(j);
[xC,yCT,yCB] = DrawNode(x, y, n{node}.name, w);
n{node}.xC = xC;
n{node}.yCT = yCT;
n{node}.yCB = yCB;
x = x + 3*w.width;

end

61

CHAPTER 5 MATLAB GRAPHICS

y = y - dY;
end

% Connect the nodes
%------------------
for k = 1:m

if(˜isempty(n{k}.parent))
ConnectNode(n{k}, n{n{k}.parent},w);

end
end

axis off
axis image

%--
% Draw a node. This is a circle with a number in the middle.
%--
function [xC,yCT,yCB] = DrawNode(x0, y0, k, w)

n = 20;
a = linspace(0,2*pi*(1-1/n),n);

x = w.width*cos(a)/2 + x0;
y = w.width*sin(a)/2 + y0;
patch(x,y,'w');
text(x0,y0,sprintf('%d',k),'fontname',w.fontName,'fontsize',w.fontSize,

'horizontalalignment','center');

xC = x0;
yCT = y0 + w.width/2;
yCB = y0 - w.width/2;

%--
% Connect a node to its parent
%--
function ConnectNode(n, nP, w)

x = [n.xC nP.xC];
y = [n.yCT nP.yCB];

line(x,y,'linewidth',w.linewidth,'color',w.linecolor);

The demo shows how to use the function. In this case, it takes more lines of code to write out the
hierarchical information than it does to plot the tree!

%--
% Create the demo data structure
%--
function Demo

k = 1;
%---------------
row = 1;
d.parent = [];

62

CHAPTER 5 MATLAB GRAPHICS

d.name = 1;
d.row = row;
n{k} = d; k = k + 1;

%---------------
row = 2;

d.parent = 1;
d.name = 1;
d.row = row;
n{k} = d; k = k + 1;

d.parent = 1;
d.name = 2;
d.row = row;
n{k} = d; k = k + 1;

d.parent = [];
d.name = 3;
d.row = row;
n{k} = d; k = k + 1;

%---------------
row = 3;

d.parent = 2;
d.name = 1;
d.row = row;
n{k} = d; k = k + 1;

d.parent = 2;
d.name = 4;
d.row = row;
n{k} = d; k = k + 1;

d.parent = 3;
d.name = 2;
d.row = row;
n{k} = d; k = k + 1;

d.parent = 3;
d.name = 5;
d.row = row;
n{k} = d; k = k + 1;

d.parent = 4;
d.name = 6;
d.row = row;
n{k} = d; k = k + 1;

d.parent = 4;
d.name = 7;

63

CHAPTER 5 MATLAB GRAPHICS

d.row = row;
n{k} = d; k = k + 1;
%---------------
row = 4;

d.parent = 5;
d.name = 1;
d.row = row;
n{k} = d; k = k + 1;

d.parent = 6;
d.name = 8;
d.row = row;
n{k} = d; k = k + 1;

d.parent = 6;
d.name = 4;
d.row = row;
n{k} = d; k = k + 1;

d.parent = 7;
d.name = 2;
d.row = row;
n{k} = d; k = k + 1;

d.parent = 7;
d.name = 9;
d.row = row;
n{k} = d; k = k + 1;

d.parent = 9;
d.name = 10;
d.row = row;
n{k} = d; k = k + 1;

d.parent = 10;
d.name = 11;
d.row = row;
n{k} = d; k = k + 1;

d.parent = 10;
d.name = 12;
d.row = row;
n{k} = d;

%---------------
% Call the function with the demo data
TreeDiagram(n)

64

CHAPTER 5 MATLAB GRAPHICS

5.4 Three-Dimensional Box
There are two broad classes of three-dimensional (3D) graphics. One is to draw an object, like the earth.
The other is to draw large data sets. This recipe plus the following one will show you how to do both.

5.4.1 Problem
We want to draw a 3D box.

5.4.2 Solution
Use the patch function to draw the object. An example is shown in Figure 5.4.

Figure 5.4: A box drawn with patch.

z

1.5

1

0.5

0

-0.5

-1

-1.5

1

0.5

0

-0.5
y -1 -0.5

0.5
0

x

5.4.3 How It Works
Three-dimensional objects are created from vertices and faces. A vertex is a point in space. You create
a list of vertices that are the corners of your 3D object. You then create faces that are lists of vertices. A
face with two vertices is a line, while one with three vertices is a triangle. A polygon can have as many
vertices as you would like. However, at the lowest level graphics processors deal with triangles, so you
are best off making all patches triangles. Figure 5.5 shows a triangle and the outward normal. You will
notice the normal vector. This is the outward vector. Your vertices in your patches should be ordered
using the ”right-hand rule”; that is, if the normal is in the direction of your thumb, then the faces are
ordered in the direction of your fingers. In this figure the order for the two triangles would be

65

CHAPTER 5 MATLAB GRAPHICS

Figure 5.5: A patch. The normal is toward the camera or the “outside” of the object.

[3 2 1]
[1 4 3]

MATLAB lighting is not very picky about vertex ordering, but if you export a model then you will need
to follow this convention. Otherwise, you can end up with inside-out objects!

The following code creates a box composed of triangle patches. The face and vertex arrays are created
by hand.

function [v, f] = Box(x, y, z)

% Demo
if(nargin < 1)

Demo
return

end

% Faces
f = [2 3 6;3 7 6;3 4 8;3 8 7;4 5 8;4 1 5;2 6 5;2 5 1;1 3 2;1 4 3;5 6 7;5 7

8];

% Vertices
v = [-x x x -x -x x x -x;...

-y -y y y -y -y y y;...
-z -z -z -z z z z z]'/2;

% Default outputs
if(nargout == 0)

DrawVertices(v, f, 'Box');
clear v

end

66

CHAPTER 5 MATLAB GRAPHICS

function Demo
x = 1;
y = 2;
z = 3;
Box(x, y, z);

The box is drawn using path in the function DrawVertices. There is just one call to patch.
patch accepts parameter pairs to specify face and edge coloring and many other characteristics of the
patch. Only one color can be specified for a patch. If you wanted a box with different colors on each side,
you would need multiple patches.

function DrawVertices(v, f, name)

% Demo
if(nargin < 1)

Demo
return

end

if(nargin < 3)
name = 'Vertices';

end

NewFigure(name)
patch('vertices',v,'faces',f,'facecolor',[0.8 0.1 0.2]);
axis image
xlabel('x')
ylabel('y')
zlabel('z')
view(3)
grid on
rotate3d on
s = 10*max(Mag(v'));
light('position',s*[1 1 1])

function Demo

[v,f] = Box(2,3,4);
DrawVertices(v, f, 'box')

We use only the most basic lighting. You can add all sorts of lights in your drawing using light.

5.5 Draw a 3D Object with a Texture
5.5.1 Problem
We want to draw a planet.

67

CHAPTER 5 MATLAB GRAPHICS

5.5.2 Solution
Use a surface and overlay a texture onto the surface. Figure 5.6 shows an example with a recent image
of Pluto.

Figure 5.6: A three-dimensional globe of Pluto.

5.5.3 How It Works
We generate the picture by first creating x,y,z points on the sphere and then overlaying a texture that is
read in from an image file. The texture map can be read from a file using imread. If this is color, it
will be a 3D matrix. The third element will be an index to the color, red, blue, or green. However, if it a
grayscale image, you must create the 3D matrix by replicating the image.

p = imread('PlutoGray.png');
p3(:,:,1) = p;
p3(:,:,2) = p;
p3(:,:,3) = p;

The starting p is a 2D matrix.
You first generate the surface using the coordinates generated from the sphere function. This is

done with surface. You then apply the texture

68

CHAPTER 5 MATLAB GRAPHICS

set(hSurf,'edgecolor', 'none',...
'EdgeLighting', 'phong','FaceLighting', 'phong',...
'specularStrength',0.1,'diffuseStrength',0.9,...
'SpecularExponent',0.5,'ambientStrength',0.2,...
'BackFaceLighting','unlit');

Phong is a type of shading. It takes the colors at the vertices and interpolates the colors at the pixels on
the polygon based on the interpolated normals. The complete code is shown below. Diffuse and specular
refer to different types of reflections of light. They aren’t too important when you apply a texture to the
surface.

% Defaults
if(nargin < 1)

planet = 'Pluto.png';
radius = 1151;

end

if(ischar(planet))
planetMap = imread(planet);

else
planetMap = planet;

end

NewFigure('Globe')

[x,y,z] = sphere(50);
x = x*radius;
y = y*radius;
z = z*radius;
hSurf = surface(x,y,z);
grid on;
for i= 1:3

planetMap(:,:,i)=flipud(planetMap(:,:,i));
end
set(hSurf,'Cdata',planetMap,'Facecolor','texturemap');
set(hSurf,'edgecolor', 'none',...

'EdgeLighting', 'phong','FaceLighting', 'phong',...
'specularStrength',0.1,'diffuseStrength',0.9,...
'SpecularExponent',0.5,'ambientStrength',0.2,...
'BackFaceLighting','unlit');

view(3);
xlabel('x (km)')
ylabel('y (km)')
zlabel('z (km)')
rotate3d on
axis image

69

CHAPTER 5 MATLAB GRAPHICS

5.6 General 3D Graphics
5.6.1 Problem
We want to use 3D graphics to study a 2D data set.

5.6.2 Solution
Use MATLAB surface, mesh, bar, and contour functions. An example of a random data set with different
visualizations is shown in Figure 5.7.

Figure 5.7: Two-dimensional data shown with six different plot types.

0
10

0.5

10

surf

5

1

5
0 0

0
10

0.5

10

surfl

5

1

5
0 0

0
10

0.5

10

mesh

5

1

5
0 0

0

0.5

12

1

3

bar3

4 875 66 57 48 321

0
0.5

1

1

2

bar3

34 85 76 657 48 321

0

0.2

0.4

0.6

0.8

contour

2 4 6 8
1

2

3

4

5

6

7

8

70

CHAPTER 5 MATLAB GRAPHICS

5.6.3 How It Works
We generate a random 2D data set that is 8 × 8 using rand. We display it in several ways in a figure
with subplots. In this case, we create two rows and three columns of subplots. Figure 5.7 shows six types
of 2D plots. surf, mesh and surfl (3D shaded surface with lighting) are very similar. The surface
plots are more interesting when lighting is applied. The two bar3 plots show different ways of coloring
the bars. In the second bar plot, the color varies with length. This requires a bit of code, changing the
CData and FaceColor.

m = rand(8,8);

NewFigure('Two Dimensional Data');

subplot(2,3,1)
surf(m)
title('surf')

subplot(2,3,2)
surfl(m,'light')
title('surfl')

subplot(2,3,3)
mesh(m)
title('mesh')

subplot(2,3,4)
bar3(m)
title('bar3')

subplot(2,3,5)
h = bar3(m);
title('bar3')

colorbar
for k = 1:length(h)

zdata = h(k).ZData;
h(k).CData = zdata;
h(k).FaceColor = 'interp';

end

subplot(2,3,6)
contour(m);
title('contour')

71

CHAPTER 5 MATLAB GRAPHICS

5.7 Building a Graphical User Interface
5.7.1 Problem
We want a graphical user interface (GUI) to provide a second-order system simulation.

5.7.2 Solution
We will use the MATLAB GUIDE to build a GUI that will allow us to

1. Set the damping constant.

2. Set the end time for the simulation.

3. Set the type of input (pulse, step, or sinusoid).

4. Display the inputs and outputs plot.

5.7.3 How It Works
We want to build a GUI to interface with SecondOrderSystemSim shown below.

function [xP, t, tL] = SecondOrderSystemSim(d)

if(nargin < 1)
xP = DefaultDataStructure;
return

end

omega = max([d.omega d.omegaU]);
dT = 0.1*2*pi/omega;
n = floor(d.tEnd/dT);
xP = zeros(2,n);
x = [0;0];
t = 0;

for k = 1:n
[˜,u] = RHS(t,x,d);
xP(:,k) = [x(1);u];
x = RungeKutta(@RHS, t, x, dT, d);
t = t + dT;

end

[t,tL] = TimeLabel((0:n-1)*dT);

if(nargout == 0)
PlotSet(t,xP,'x label',tL,'y label', {'x' 'u'}, 'figure title','Filter');

end

72

CHAPTER 5 MATLAB GRAPHICS

%% SecondOrderSystemSim>>RHS
function [xDot,u] = RHS(t, x, d)

u = 0;

switch(lower(d.input))
case 'pulse'

if(t > d.tPulseBegin && t < d.tPulseEnd)
u = 1;

end

case 'step'
u = 1;

case 'sinusoid'
u = sin(d.omegaU*t);

end

f = u - 2*d.zeta*d.omega*x(2) - d.omegaˆ2*x(1);

xDot = [x(2);f];

%% SecondOrderSystemSim>>DefaultDataStructure
function d = DefaultDataStructure

d = struct();
d.omega = 0.1;
d.zeta = 0.4;
d.omegaU = 0.3;
d.input = 'step';

Running it gives the following plot Figure 5.8. The function has the simulation loop built in.

73

CHAPTER 5 MATLAB GRAPHICS

Figure 5.8: Second-order system simulation.

The MATLAB GUI building system, GUIDE, is invoked by typing guide at the command line.
There are several options for GUI templates, or a blank GUI. We will start from a blank GUI. First, let’s
make a list of the controls we will need from our desired features list above:

• Edit boxes for

– Simulation duration

– Damping ratio

– Undamped natural frequency

– Sinusoid input frequency

– Pulse start and stop time

• Radio button for the type of input

• Run button for starting a simulation

• Plot axes

We type “guide” in the command window and it asks us to either pick an existing GUI or create a
new one. We choose blank GUI. Figure 5.9 shows the template GUI in GUIDE before we make any
changes to it. You add elements by dragging and dropping from the table at the left.

74

CHAPTER 5 MATLAB GRAPHICS

Figure 5.9: Blank GUI.

Figure 5.10 shows the GUI inspector. You edit GUI elements here. You can see that the elements
have a lot of properties. We aren’t going to try and make this GUI really slick, but with some effort you
can make it a work of art. The ones we will change are the tag and text properties. The tag gives the
software a name to use internally. The text is just what is shown on the device.

We then add all the desired elements by dragging and dropping. We choose to name our GUI GUI.
The resulting initial GUI is shown in Figure 5.11. In the inspector for each element you will see a field
for “tag.” Change the names from things like edit1 to names you can easily identify. When you save
them and run the GUI from the .fig file, the code in GUI.m will automatically change.

We create a radio button group and add the radio buttons. This handles disabling all but the selected
radio button. When you hit the green arrow in the layout box, it saves all changes to the m-file and also
simulates it. It will warn you about bugs.

At this point, we can start work on the GUI code itself. The template GUI stores its data, calculated
from the data the user types into the edit boxes, in a field called simdata. The entire function is shown
below. We’ve removed the repeated comments to make it more compact.

75

CHAPTER 5 MATLAB GRAPHICS

gui_Singleton = 1;
gui_State = struct('gui_Name', mfilename, ...

'gui_Singleton', gui_Singleton, ...
'gui_OpeningFcn', @SimGUI_OpeningFcn, ...
'gui_OutputFcn', @SimGUI_OutputFcn, ...
'gui_LayoutFcn', [] , ...
'gui_Callback', []);

if nargin && ischar(varargin{1})
gui_State.gui_Callback = str2func(varargin{1});

end

if nargout
[varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});

else

Figure 5.10: The GUI inspector.

76

CHAPTER 5 MATLAB GRAPHICS

Figure 5.11: Snapshot of the GUI in the editing window after adding all the elements.

gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT

% --- Executes just before SimGUI is made visible.
function SimGUI_OpeningFcn(hObject, eventdata, handles, varargin)

% Choose default command line output for SimGUI
handles.output = hObject;

% Get the default data
handles.simData = SecondOrderSystemSim;

% Set the default states
set(handles.editDuration,'string',num2str(handles.simData.tEnd));
set(handles.editUndamped,'string',num2str(handles.simData.omega));
set(handles.editPulseStart,'string',num2str(handles.simData.tPulseBegin));
set(handles.editPulseEnd,'string',num2str(handles.simData.tPulseEnd));
set(handles.editDamping,'string',num2str(handles.simData.zeta));
set(handles.editInputFrequency,'string',num2str(handles.simData.omegaU));

% Update handles structure
guidata(hObject, handles);

77

CHAPTER 5 MATLAB GRAPHICS

% UIWAIT makes SimGUI wait for user response (see UIRESUME)
% uiwait(handles.figure1);

% --- Outputs from this function are returned to the command line.
function varargout = SimGUI_OutputFcn(hObject, eventdata, handles)

varargout{1} = handles.output;

% --- Executes on button press in step.
function step_Callback(hObject, eventdata, handles)

if(get(hObject,'value'))
handles.simData.input = 'step';
guidata(hObject, handles);

end

% --- Executes on button press in pulse.
function pulse_Callback(hObject, eventdata, handles)

if(get(hObject,'value'))
handles.simData.input = 'pulse';

guidata(hObject, handles);
end

% --- Executes on button press in sinusoid.
function sinusoid_Callback(hObject, eventdata, handles)

if(get(hObject,'value'))
handles.simData.input = 'sinusoid';

guidata(hObject, handles);
end

% --- Executes on button press in start.
function start_Callback(hObject, eventdata, handles)

[xP, t, tL] = SecondOrderSystemSim(handles.simData);

axes(handles.position)
plot(t,xP(1,:));
ylabel('Position')
grid

axes(handles.input)
plot(t,xP(2,:));
xlabel(tL);
ylabel('input');
grid

function editDuration_Callback(hObject, eventdata, handles)

handles.simData.tEnd = str2double(get(hObject,'String'));
guidata(hObject, handles);

78

CHAPTER 5 MATLAB GRAPHICS

% --- Executes during object creation, after setting all properties.
function editDuration_CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'

defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');

end

function editUndamped_Callback(hObject, eventdata, handles)

handles.simData.omega = str2double(get(hObject,'String'));
guidata(hObject, handles);

% --- Executes during object creation, after setting all properties.
function editUndamped_CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'

defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');

end

function editPulseStart_Callback(hObject, eventdata, handles)

handles.simData.tPulseStart = str2double(get(hObject,'String'));
guidata(hObject, handles);

% --- Executes during object creation, after setting all properties.
function editPulseStart_CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'
defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');

end

function editPulseEnd_Callback(hObject, eventdata, handles)

handles.simData.tPulseEnd = str2double(get(hObject,'String'));
guidata(hObject, handles);

% --- Executes during object creation, after setting all properties.
function editPulseEnd_CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'

defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');

end

function editDamping_Callback(hObject, eventdata, handles)

handles.simData.zeta = str2double(get(hObject,'String'));
guidata(hObject, handles);

% --- Executes during object creation, after setting all properties.
function editDamping_CreateFcn(hObject, eventdata, handles)

79

CHAPTER 5 MATLAB GRAPHICS

if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'
defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');

end

function editInput_Callback(hObject, eventdata, handles)

% --- Executes during object creation, after setting all properties.
function editInput_CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'
defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');

end

% --- If Enable == 'on', executes on mouse press in 5 pixel border.
% --- Otherwise, executes on mouse press in 5 pixel border or over step.
function step_ButtonDownFcn(hObject, eventdata, handles)

% --- If Enable == 'on', executes on mouse press in 5 pixel border.
% --- Otherwise, executes on mouse press in 5 pixel border or over pulse.
function pulse_ButtonDownFcn(hObject, eventdata, handles)

% --- If Enable == 'on', executes on mouse press in 5 pixel border.
% --- Otherwise, executes on mouse press in 5 pixel border or over sinusoid.
function sinusoid_ButtonDownFcn(hObject, eventdata, handles)

function editInputFrequency_Callback(hObject, eventdata, handles)

handles.simData.omegaU = str2double(get(hObject,'String'));
guidata(hObject, handles);

% --- Executes during object creation, after setting all properties.
function editInputFrequency_CreateFcn(hObject, eventdata, handles)
% hObject handle to editInputFrequency (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'

defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');

end

When the GUI loads, we initialize the text fields with the data from the default data structure. Make
sure that the initialization corresponds to what is seen in the GUI. You need to be careful about radio
buttons and button states.

80

CHAPTER 5 MATLAB GRAPHICS

function SimGUI_OpeningFcn(hObject, eventdata, handles, varargin)

% Choose default command line output for SimGUI
handles.output = hObject;

% Get the default data
handles.simData = SecondOrderSystemSim;

% Set the default states
set(handles.editDuration,'string',num2str(handles.simData.tEnd));
set(handles.editUndamped,'string',num2str(handles.simData.omega));
set(handles.editPulseStart,'string',num2str(handles.simData.tPulseBegin));
set(handles.editPulseEnd,'string',num2str(handles.simData.tPulseEnd));
set(handles.editDamping,'string',num2str(handles.simData.zeta));
set(handles.editInputFrequency,'string',num2str(handles.simData.omegaU));

% Update handles structure
guidata(hObject, handles);

When the start button is pushed, we run the simulation and plot the results. This essentially is the
same as the demo code in the second-order simulation.

function start_Callback(hObject, eventdata, handles)

[xP, t, tL] = SecondOrderSystemSim(handles.simData);

axes(handles.position)
plot(t,xP(1,:));
ylabel('Position')
grid

axes(handles.input)
plot(t,xP(2,:));
xlabel(tL);
ylabel('input');
grid

The callbacks for the edit boxes require a little code to set the data in the stored data. All data are
stored in the GUI handles. guidata must be called to store new data in the handles.

function editDuration_Callback(hObject, eventdata, handles)

handles.simData.tEnd = str2double(get(hObject,'String'));
guidata(hObject, handles);

One simulation is shown in Figure 5.12. Another simulation in the GUI is shown in Figure 5.13.

81

CHAPTER 5 MATLAB GRAPHICS

Figure 5.12: Snapshot of the GUI in simulation.

82

CHAPTER 5 MATLAB GRAPHICS

Figure 5.13: Snapshot of the GUI in simulation.

83

CHAPTER 5 MATLAB GRAPHICS

Summary
This chapter has demonstrated graphics that can help understand the results of machine learning software.
Two- and three-dimensional graphics were demonstrated. The chapter also showed how to build a GUI
to help automate functions. Table 5.1 lists the files used in this chapter.

Table 5.1: Chapter Code Listing

File Description
Box Draw a box.
DrawVertices Draw a set of vertices and faces
Globe Draw a texture mapped globe
PlotSet 2D line plots
SecondOrderSystemSim Simulates a second-order system
SimGUI Code for the simulation GUI
SimGUI.fig The figure
TreeDiagram Draw a tree diagram
TwoDDataDisplay A script to display 2D data in 3D graphics

84

CHAPTER 6

Machine Learning Examples
in MATLAB

6.1 Introduction
The remainder of the book provides machine learning examples in MATLAB that span the technologies
discussed. Each example provides a useful application in its own right. Full source code is provided.
In each case the theory behind the code is provided. References for further study are provided. Each
example is self-contained and addresses one of the autonomous learning technologies discussed earlier
in the book. You can jump around and try the examples that interest you the most.

As we explained earlier, autonomous learning is a huge field. There are many benefits from knowing
all aspects of the field. Those with experience in any one of the applications may find the examples to be
straightforward. Topics outside your area of expertise will be more challenging. Much like cross-training
in the gym, working in other areas will help you in your own area of expertise.

6.2 Machine Learning
We present three types of machine learning algorithms. In each case we present a simple algorithm to
achieve the desired results.

6.2.1 Neural Networks
This example will use a neural network to classify digits. We will start with a set of six digits and
create a training set by adding noise to the digital images. We will then see how well our learning
network performs at identifying a single digit, and then add more nodes and outputs to identify multiple
digits with one network. Classifying digits is one of the oldest uses of machine learning. The U.S. Post
Office introduced zip code reading years before machine learning started hitting the front pages of all the
newspapers! Earlier digit readers required block letters written in well-defined spots on a form. Reading
digits off any envelope is an example of learning in an unstructured environment.

© Michael Paluszek, Stephanie Thomas 2017
M. Paluszek and S. Thomas,MATLAB Machine Learning, DOI 10.1007/978-1-4842-2250-8 6

85

CHAPTER 6 MACHINE LEARNING EXAMPLES IN MATLAB

6.2.2 Face Recognition
Face recognition is available in almost every photo application. Many social media sites, such as Face-
book and Google Plus, also use face recognition. Cameras have built-in face recognition, though not
identification, to help with focusing when taking portraits. Our goal is to get the algorithm to match
faces, not classify them. Data classification is covered in the next chapter.

There are many algorithms for face identification, and commercial software can use multiple al-
gorithms. In this application, we pick a single algorithm and use it to identify one face in a set of
photographs—of cats.

Face recognition is a subset of general image recognition. The chapter on neural networks, Chapter
9, gives another example. Our example of face recognition works within a structured environment. The
pictures are all taken from the front and the picture only shows the head. This makes the problem much
easier to solve.

6.2.3 Data Classification
This example uses a decision tree to classify data. Classifying data is one of the most widely used areas
of machine learning. In this example, we assume that two data points are sufficient to classify a sample
and determine to which group it belongs. We have a training set of known data points with membership
in one of three groups. We then use a decision tree to classify the data. We’ll introduce a graphical display
to make understanding the process easier.

With any learning algorithm it is important to know why the algorithm made its decision. Graphics
can help you explore large data sets when columns of numbers aren’t terribly helpful.

6.3 Control
Feedback control algorithms inherently learn about the environment through measurements used for con-
trol. These chapters show how control algorithms can be extended to effectively design themselves using
measurements. The measurements may be the same as used for control but the adaptation, or learning,
happens more slowly than the control response time. An important aspect of control design is stabil-
ity. A stable controller will produce bounded outputs for bounded inputs. It will also produce smooth,
predictable behavior of the system that is controlled. An unstable controller will typically experience
growing oscillations in the quantities (such as speed or position) that are controlled. In these chapters we
explore both the performance of learning control and the stability of such controllers.

6.3.1 Kalman Filters
The Kalman filters chapter, Chapter 10, shows how Kalman filters allow you to learn about dynamical
systems for which we already have a model. This chapter provides an example of a variable-gain Kalman
filter for a spring system. That is a system with a mass connected to its base via a spring and a damper.
This is a linear system. We write the system in discrete time. This provides an introduction to Kalman
filtering. We show how Kalman filters can be derived from Bayesian statistics. This ties it into many
machine learning algorithms. Originally, the Kalman filter, developed by R. E. Kalman, C. Bucy, and R.
Battin, was not derived in this fashion.

The second section adds a nonlinear measurement. A linear measurement is a measurement propor-
tional to the state (in this case position) it measures. Our nonlinear measurement will be the angle of

86

CHAPTER 6 MACHINE LEARNING EXAMPLES IN MATLAB

a tracking device that points at the mass from a distance from the line of movement. One way is to use
an unscented Kalman filter (UKF) for state estimation. The UKF lets us use a nonlinear measurement
model easily.

The last part of the chapter describes the UKF configured for parameter estimation. This system
learns the model, albeit one that has an existing mathematical model. As such, it is an example of model-
based learning. In this example the filter estimates the oscillation frequency of the spring-mass system.
It will demonstrate how the system needs to be stimulated to identify the parameters.

6.3.2 Adaptive Control
Adaptive control is a branch of control systems in which the gains of the control system change based on
measurements of the system. A gain is a number that multiplies a measurement from a sensor to produce
a control action such as driving a motor or other actuator. In a nonlearning control system, the gains
are computed prior to operation and remain fixed. This works very well most of the time since we can
usually pick gains so that the control system is tolerant of parameter changes in the system. Our gain
“margins” tell us how tolerant we are to uncertainties in the system. If we are tolerant to big changes in
parameters, we say that our system is robust.

Adaptive control systems change the gain based on measurements during operation. This can help a
control system perform even better. The better we know a system’s model, the tighter we can control the
system. This is much like driving a new car. At first you have to be cautious driving a new car because
you don’t know how sensitive the steering is to turning the wheel or how fast it accelerates when you
depress the gas pedal. As you learn about the car you can maneuver it with more confidence. If you didn’t
learn about the car, you would need to drive every car in the same fashion.

This chapter starts with a simple example of adding damping to a spring using a control system. Our
goal is to get a specific damping time constant. For this we need to know the spring constant. Our learning
system uses a fast Fourier transform to measure the spring constant. We’ll compare it to a system that
does know the spring constant. This is an example of tuning a control system.

The second example is model reference adaptive control of a first-order system. This system auto-
matically adapts so that the system behaves like the desired model. This is a very powerful method and
applicable to many situations.

The third example is longitudinal control of an aircraft. We can control the pitch angle using the
elevators. We have five nonlinear equations for the pitch rotational dynamics, velocity in the x-direction,
velocity in the z-direction, and change in altitude. The system adapts to changes in velocity and altitude.
Both change the drag and lift forces and the moments on the aircraft and also change the response to the
elevators. We use a neural net as the learning element of our control system. This is a practical problem
applicable to all types of aircraft ranging from drones to high-performance commercial aircraft.

Our last example will be ship steering control. Ships use adaptive control because it is more efficient
than conventional control. This example demonstrates how the control system adapts and how it performs
better than its nonadaptive equivalent. This is an example of gain scheduling.

6.4 Artificial Intelligence
Only one example of artificial intelligence is included in the book. This is really a blending of Bayesian
estimation and controls. Machine learning is an offshoot of artificial intelligence so all the machine
learning examples could also be considered examples of artificial intelligence.

87

CHAPTER 6 MACHINE LEARNING EXAMPLES IN MATLAB

6.4.1 Autonomous Driving and Target Tracking
Autonomous driving is an area of great interest to automobile manufacturers and to the general public.
Autonomous cars are driving the streets today but are not yet ready for general use by the public. There
are many technologies involved in autonomous driving. These include

1. Machine vision: turning camera data into information useful for the autonomous control system

2. Sensing: using many technologies including vision, radar, and sound to sense the environment
around the car

3. Control: using algorithms to make the car go where it is supposed to go as determined by the
navigation system

4. Machine learning: using massive data from test cars to create databases of responses to situations

5. GPS navigation: blending GPS measurements with sensing and vision to figure out where to go

6. Communications/ad hoc networks: talking with other cars to help determine where they are and
what they are doing

All of the areas overlap. Communications and ad hoc networks are used with GPS navigation to deter-
mine both absolute location (what street and address correspond to your location) and relative navigation
(where you are with respect to other cars).

This example explores the problem of a car being passed by multiple cars and needing to compute
tracks for each one. We are really addressing just the control and collision avoidance problem. A single-
sensor version of track-oriented multiple-hypothesis testing is demonstrated for a single car on a two-
lane road. The example includes MATLAB graphics that make it easier to understand the thinking of the
algorithm. The demo assumes that the optical or radar preprocessing has been done and that each target
is measured by a single “blip” in two dimensions. An automobile simulation is included. It involves cars
passing the car that is doing the tracking. The passing cars use a passing control system that is in itself a
form of machine intelligence.

This chapter uses a UKF for the estimation of the state. This is the underlying algorithm that propa-
gates the state (that is, advances the state in time in a simulation) and adds measurements to the state. A
Kalman filter, or other estimator, is the core of any target tracking system.

The section will also introduce graphics aids to help you understand the tracking decision process.
When you implement a learning system, you want to make sure it is working the way you think it should,
or understand why it is working the way it does.

88

CHAPTER 7

Face Recognition with Deep
Learning

A general neural net is shown in Figure 7.1. This is a “deep learning” neural net because it has multiple
internal layers.

Figure 7.1: Deep learning neural net.

Output

Input
Activation Function

Layers

A convolutional neural network is a pipeline with multiple stages. The images go into one end and
the probability that the image is a cat comes out the other. There are three types of layers:

• Convolutional layers (hence the name)

• Pooling layers

• Fully connected layers

A convolutional neural net is shown in Figure 7.2. This is also a “deep learning” neural net because
it has multiple internal layers, but now the layers are of the three types described above.

© Michael Paluszek, Stephanie Thomas 2017
M. Paluszek and S. Thomas,MATLAB Machine Learning, DOI 10.1007/978-1-4842-2250-8 7

89

CHAPTER 7 FACE RECOGNITION WITH DEEP LEARNING

Figure 7.2: Deep learning convolutional neural net [1].

Convolution Layer

Convolution Layer

Pool Layer

Convolution Layer

Convolution Layer

Pool Layer

Fully Connected
Layer

Fully Connected
Layer

ProbabilityInput

Weights from Training

We can have as many layers as we want. A neuron in a neural net is

y= σ(wx+b) (7.1)

where w is a weight, b is a bias, and σ() is the nonlinear function that operates on the input wx+b. This
is the activation function. There are many possible sigmoid functions.

A sigmoid or hyperbolic tangent is often used as the activation function. The function Activation
generates activation functions.

%% ACTIVATION - Implement activation functions

%% Format
% s = Activation(type, x, k)
%
%% Description
% Generates an activation function
%
%% Inputs
%
% type (1,:) Type 'sigmoid', 'tanh', 'rlo'
% x (1,:) Input
% k (1,1) Scale factor
%
%% Outputs
%
% s (1,:) Output
%

90

CHAPTER 7 FACE RECOGNITION WITH DEEP LEARNING

function s = Activation(type, x, k)

% Demo
if(nargin < 1)

Demo
return

end

if(nargin < 3)
k = 1;

end

switch lower(type)
case 'elo'

j = x > 0;
s = zeros(1,length(x));
s(j) = 1;

case 'tanh'
s = tanh(k*x);

case 'sigmoid'
s = (1-exp(-k*x))./(1+exp(-k*x));

end

function Demo
%% Demo

x = linspace(-2,2);
s = [Activation('elo',x);...

Activation('tanh',x);...
Activation('sigmoid',x)];

PlotSet(x,s,'x label','x','y label','\sigma(x)',...
'figure title','Activation Functions',...
'legend',{{'ELO' 'tanh' 'Sigmoid'}},'plot set',{1:3});

Figure 7.3 shows the three activation functions with k=1. A third is the rectified linear output function
or

91

CHAPTER 7 FACE RECOGNITION WITH DEEP LEARNING

Figure 7.3: Activation function.

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

x

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

(x
)

ELO
tanh
Sigmoid

f (x) =

{
x x> 0
0 x≤ 0

(7.2)

This seems a bit strange for an image processing network where the inputs are all positive. However, the
bias term can make the argument negative and previous layers may also change the sign.

The following recipes will detail each step in the chain. We will start with gathering image data.
We will then describe the convolution process. The next recipe will implement pooling. We will show a
recipe for Softmax. We will then demonstrate the full network using random weights. Finally, we will
train the network using a subset of the images and see if we can identify the other images.

7.1 Obtain Data Online: For Training a Neural Network
7.1.1 Problem
We want to find photographs online for training a face recognition neural net.

92

CHAPTER 7 FACE RECOGNITION WITH DEEP LEARNING

7.1.2 Solution
Go to ImageNet to find images.

7.1.3 How It Works
ImageNet, http://www.image-net.org, is an image database organized according to the Word-
Net hierarchy. Each meaningful concept in WordNet is called a “synonym set.” There are more than
100,000 sets and 14 million images in ImageNet. For example, type in “Siamese cat.” Click on the link.
You will see 445 images. You’ll notice that there are a wide variety of shots from many angles and a
wide range of distances.

Synset: Siamese cat, Siamese
Definition: a slender, short-haired, blue-eyed breed of cat having a pale

coat with dark ears, paws, face, and tail tip.
Popularity percentile:: 57%
Depth in WordNet: 8

This is a great resource! However, we are going to instead use pictures of our cats for our test to avoid
copyright issues.

7.2 Generating Data for Training a Neural Net
7.2.1 Problem
We want grayscale photographs for training a face recognition neural net.

7.2.2 Solution
Take photographs using a digital camera.

7.2.3 How It Works
We first take pictures of several cats. We’ll use them to train the net. The photos are taken using an iPhone
6. We take just facial photos; to make the problem easier, we limit the photos to facial shots of the cats.
We then frame the shots so that they are reasonably consistent in size and minimize the background. We
then convert them to grayscale.

We use the function ImageArray to read in the images. It takes a path to a folder containing the
images to be processed.

%% IMAGEARRAY Read in an array of images
%
%% Form:
% s = ImageArray(folderPath, scale)
%
%% Description
% Creates a cell array of images. scale will scale by 2ˆscale
%
%% Inputs
% folderPath (1,:) Path to the folder
% scale (1,1) Integer.
%
%% Outputs
% s {:} Image array
% sName {:} Names

93

http://www.image-net.org

CHAPTER 7 FACE RECOGNITION WITH DEEP LEARNING

function [s, sName] = ImageArray(folderPath, scale)

% Demo
if(nargin < 1)

folderPath = './Cats1024/';
ImageArray(folderPath, 4);
return;

end

c = cd;
cd(folderPath)

d = dir;

n = length(d);

j = 0;
s = cell(n-2,1);
sName = cell(1,n);
for k = 1:n

sName{k} = d(k).name;
if(˜strcmp(sName{k},'.') && ˜strcmp(sName{k},'..'))

j = j + 1;
t = ScaleImage(flipud(imread(d(k).name)),scale);
s{k} = (t(:,:,1)+ t(:,:,2) + t(:,:,3))/3;

end
end

del = size(s{k},1);
lX = 3*del;

% Draw the images
NewFigure(folderPath);
colormap(gray);
n = length(s);
x = 0;
y = 0;
for k = 1:n

image('xdata',[x;x+del],'ydata',[y;y+del],'cdata', s{k});
hold on
x = x + del;
if (x == lX);

x = 0;
y = y + del;

end
end
axis off
axis image

94

CHAPTER 7 FACE RECOGNITION WITH DEEP LEARNING

for k = 1:length(s)
s{k} = double(s{k})/256;

end

cd(c)

The function has a demo with our local folder of cat images.

function [s, sName] = ImageArray(folderPath, scale)

% Demo
if(nargin < 1)

folderPath = './Cats1024/';
ImageArray(folderPath, 4);
return;

end

c = cd;
cd(folderPath)

d = dir;

n = length(d);

j = 0;
s = cell(n-2,1);
sName = cell(1,n);
for k = 1:n

sName{k} = d(k).name;
if(˜strcmp(sName{k},'.') && ˜strcmp(sName{k},'..'))

j = j + 1;
t = ScaleImage(flipud(imread(d(k).name)),scale);
s{k} = (t(:,:,1)+ t(:,:,2) + t(:,:,3))/3;

end
end

del = size(s{k},1);
lX = 3*del;

% Draw the images
NewFigure(folderPath);
colormap(gray);
n = length(s);
x = 0;
y = 0;
for k = 1:n

image('xdata',[x;x+del],'ydata',[y;y+del],'cdata', s{k});
hold on
x = x + del;
if (x == lX);

x = 0;
y = y + del;

ImageArray uses averages the three colors to convert the color images to grayscale. It flips them
upside down since the image coordinates are opposite that of MATLAB. We used GraphicConverter

95

CHAPTER 7 FACE RECOGNITION WITH DEEP LEARNING

10TM to crop the images around the cat’s face and make them all 1024 x 1024 pixels. One of the chal-
lenges of image matching is to do this process automatically. Also, training typically uses thousands of
images. We are using just a few to see if our neural net can determine if the test image is a cat, or even
one we have used in training! ImageArray scales the image using the function ScaleImage

%% SCALEIMAGE - Scale an image by powers of 2.

%% Format
% s2 = ScaleImage(s1, n)
%
%% Description
% Scales an image by powers of 2. The scaling will be 2ˆn.
% Takes the mean of the neighboring pixels. Only works with RGB images.
%
%% Inputs
%
% s1 (:,:,3) Image
% n Scale Integer
%
%% Outputs
%
% s1 (:,:,3) Scaled image
%

function s2 = ScaleImage(s1, q)

% Demo
if(nargin < 1)

Demo
return

end

n = 2ˆq;

[mR,˜,mD] = size(s1);

m = mR/n;

s2 = zeros(m,m,mD,'uint8');

for i = 1:mD
for j = 1:m

r = (j-1)*n+1:j*n;
for k = 1:m

c = (k-1)*n+1:k*n;
s2(j,k,i) = mean(mean(s1(r,c,i)));

end
end

end

function Demo
%% Demo

96

CHAPTER 7 FACE RECOGNITION WITH DEEP LEARNING

s1 = flipud(imread('Cat.png'));
n = 2;

s2 = ScaleImage(s1, n);

n = 2ˆn;

NewFigure('ScaleImage')

x = 0;
y = 0;

del = 1024;

sX = image('xdata',[x;x+del],'ydata',[y;y+del],'cdata', s1);
x = x + del;
s = image('xdata',[x;x+del/n],'ydata',[y;y+del/n],'cdata', s2);

axis image
axis off

Notice that it creates the new image array as uint8. Figure 7.4 shows the results of scaling.
The images are shown in Figure 7.5.

7.3 Convolution
7.3.1 Problem
We want to implement convolution to reduce the number of weights in the network.

Figure 7.4: Image scaled from 1024 × 1024 to 256 × 256.

97

CHAPTER 7 FACE RECOGNITION WITH DEEP LEARNING

Figure 7.5: (64 × 64)-pixel grayscale cat images.

7.3.2 Solution
Implement convolution using MATLAB matrix operations.

7.3.3 How It Works
We create an n-x-n mask that we apply to the input matrix. The matrix dimensions are m x m, where
m is greater than n. We start in the upper left corner of the matrix. We multiply the mask times the
corresponding elements in the input matrix and do a double sum. That is the first element of the convolved
output. We then move it column by column until the highest column of the mask is aligned with the
highest column of the input matrix. We then return it to the first column and increment the row. We
continue until we have traversed the entire input matrix and our mask is aligned with the maximum row
and maximum column.

The mask represents a feature. In effect, we are seeing if the feature appears in different areas of the
image. We can have multiple masks. There are one bias and one weight for each element of the mask for
each feature. In this case, instead of 16 sets of weights and biases, we only have 4. For large images, the
savings can be substantial. In this case the convolution works on the image itself. Convolutions can also
be applied to the output of other convolutional layers or pooling layers, as shown in Figure 7.6.

Convolution is implemented in Convolve.m.

%% Convolve
%
%% Format
% c = Convolve(a, b)
%
%% Description
% Convolves a with b.
% a should be smaller than b.
%
% This is a a way to extract features.
%
% nC = nB - nA + 1;
% mC = mB - mA + 1;
%
%% Inputs
%
% a (nA,mA) Matrix to convolve with b
% b (nB,mB) Matrix to be convolved

98

CHAPTER 7 FACE RECOGNITION WITH DEEP LEARNING

Figure 7.6: Convolution process showing the mask at the beginning and end of the process.

1
5

1
2 1 0

0
3

1
1 0 7

1 9 12 13

4 9 02 16

8 3 8

13 3 10

19 13 11

Input Matrix

Mask

Convolution Matrix

1 1

0 1

%
%% Outputs
%
% c (nC,mB) Convolution result with one feature result per element
%

function c = Convolve(a, b)

% Demo
if(nargin < 1)

a = [1 0 1;0 1 0;1 0 1]
b = [1 1 1 0 0 0;0 1 1 1 0 1;0 0 1 1 1 0;0 0 1 1 0 1;0 1 1 0 0 1;0 1 1 0 0

1]
c = Convolve(a, b);
return

end

[nA,mA] = size(a);
[nB,mB] = size(b);
nC = nB - nA + 1;
mC = mB - mA + 1;
c = zeros(nC,mC);
for j = 1:mC

jR = j:j+nA-1;
for k = 1:nC

kR = k:k+mA-1;

99

CHAPTER 7 FACE RECOGNITION WITH DEEP LEARNING

c(j,k) = sum(sum(a.*b(jR,kR)));
end

end

The demo produces the following results.

>> Convolve

a =

1 0 1
0 1 0
1 0 1

b =

1 1 1 0 0 0
0 1 1 1 0 1
0 0 1 1 1 0
0 0 1 1 0 1
0 1 1 0 0 1
0 1 1 0 0 1

ans =

4 3 4 1
2 4 3 5
2 3 4 2
3 3 2 3

7.4 Convolution Layer
7.4.1 Problem
We want to implement a convolution connected layer.

7.4.2 Solution
Use code from Convolve to implement the layer.

7.4.3 How It Works
The “convolution” neural net scans the input with the mask. Each input to the mask passes through an
activation function that is identical for a given mask. This reduces the number of weights.

%% CONVOLUTIONLAYER
%
%% Format
% y = ConvolutionLayer(x, d)
%
%% Description
% Implements a fully connected neural network
%

100

CHAPTER 7 FACE RECOGNITION WITH DEEP LEARNING

%% Inputs
%
% x (n,n) Input
% d (.) Data structure
% .mask (m,m) Mask values
% .w (m,m) Weights
% .b (m,m) Biases
% .aFun (1,:) Activation Function
%
%% Outputs
%
% y (p,p) Outputs
%

function y = ConvolutionLayer(x, d)

% Demo
if(nargin < 1)

if(nargout > 0)
y = DefaultDataStructure;

else
Demo;

end
return

end

a = d.mask;
aFun = str2func(d.aFun);
[nA,mA] = size(a);
[nB,mB] = size(x);
nC = nB - nA + 1;
mC = mB - mA + 1;
y = zeros(nC,mC);
for j = 1:mC

jR = j:j+nA-1;
for k = 1:nC

kR = k:k+mA-1;
y(j,k) = sum(sum(a.*Neuron(x(jR,kR),d, aFun)));

end
end

function y = Neuron(x, d, afun)
%% Neuron function
y = afun(x.*d.w + d.b);

function d = DefaultDataStructure
%% Default Data Structure

d = struct('mask',ones(9,9),'w',rand(9,9),'b',rand(9,9),'aFun','tanh');

function Demo
%% Demo

101

CHAPTER 7 FACE RECOGNITION WITH DEEP LEARNING

d = DefaultDataStructure;
x = rand(16,16);
y = ConvolutionLayer(x, d);

NewFigure('Convolution Layer');

subplot(2,1,1)
surf(x)
title('Input')

subplot(2,1,2)
surf(y)
title('Output')

Figure 7.7 shows the inputs and outputs from the demo. The tanh activation function is used in this
demo. The weights and biases are random.

Figure 7.7: Inputs and outputs for the convolution layer.

102

CHAPTER 7 FACE RECOGNITION WITH DEEP LEARNING

7.5 Pooling
7.5.1 Problem
We want to pool the outputs of the convolution layer to reduce the number of points we need to process.

7.5.2 Solution
Implement a function to take the output of the convolution function.

7.5.3 How It Works
Pooling layers take a subset of the outputs of the convolutional layers and pass that on. They do not

have any weights. Pooling layers can use the maximum value of the pool or take the median or mean
value. Our pooling function has all there as an option. The pooling function divides the input into n x n
subregions and returns an n x n matrix.

Pooling is implemented in Pool.m. Notice we use str2func instead of a switch statement.

%% Pool - pool values from a 2D array
%
%% Format
% b = Pool(a, n, type)
%
%% Description
% Creates an nxn matrix from a.
% a be a power of 2.
%
%% Inputs
%
% a (:,:) Matrix to convolve with b
% n (1,1) Number of pools
% type (1,:) Pooling type
%
%% Outputs
%
% b (n,n) Pool
%

function b = Pool(a, n, type)

% Demo
if(nargin < 1)

a = rand(4,4)
b = Pool(a, 4, type);
return

end

if(nargin <3)
type = 'mean';

end

n = n/2;
p = str2func(type);

103

CHAPTER 7 FACE RECOGNITION WITH DEEP LEARNING

nA = size(a,1);

nPP = nA/n;

b = size(n,n);
for j = 1:n

r = (j-1)*nPP +1:j*nPP;
for k = 1:n

c = (k-1)*nPP +1:k*nPP;
b(j,k) = p(p(a(r,c)));

end
end

The demo produces the following results.
The built-in demo creates 4 pools from an 4 x 4 matrix.

>> Pool

a =

0.9031 0.7175 0.5305 0.5312
0.1051 0.1334 0.8597 0.9559
0.7451 0.4458 0.6777 0.0667
0.7294 0.5088 0.8058 0.5415

ans =

0.4648 0.7193
0.6073 0.5229

7.6 Fully Connected Layer
7.6.1 Problem
We want to implement a fully connected layer.

7.6.2 Solution
Use Activation to implement the network.

7.6.3 How It Works
The “fully connected” neural net layer is the traditional neural net where every input is connected to
every output as shown in Figure 7.8. We implement the fully connected network with n inputs and m
outputs. Each path to an output can have a different weight and bias. FullyConnectedNN can handle
any number of inputs or outputs.

%% FULLYCONNECTEDNN
%
%% Format
% y = FullyConnectedNN(x, d)
%

104

CHAPTER 7 FACE RECOGNITION WITH DEEP LEARNING

Figure 7.8: Fully connected neural net. This shows only one output.

%% Description
% Implements a fully connected neural network
%
%% Inputs
%
% x (n,1) Inputs
% d (.) Data structure
% .w (n,m) Weights
% .b (n,m) Biases
% .aFun (1,:) Activation Function
%
%% Outputs
%
% y (m,1) Outputs
%

function y = FullyConnectedNN(x, d)

% Demo
if(nargin < 1)

if(nargout > 0)
y = DefaultDataStructure;

else
Demo;

end
return

end

y = zeros(d.m,size(x,2));

aFun = str2func(d.aFun);

105

CHAPTER 7 FACE RECOGNITION WITH DEEP LEARNING

n = size(x,1);
for k = 1:d.m

for j = 1:n
y(k,:) = y(k,:) + aFun(d.w(j,k)*x(j,:) + d.b(j,k));

end
end

function d = DefaultDataStructure
%% Default Data Structure

d = struct('w',[],'b',[],'aFun','tanh','m',1);

function Demo
%% Demo

d = DefaultDataStructure;
a = linspace(0,8*pi);
x = [sin(a);cos(a)];

d.w = rand(2,2);
d.b = rand(2,2);
d.aFun = 'tanh';
d.m = 2;
n = length(x);
y = FullyConnectedNN(x, d);

yL = {'x_1' 'x_2' 'y_1' 'y_2'};
PlotSet(1:n,[x;y],'x label','step','y label',yL,'figure title','FCNN');

Figure 7.9 shows the outputs from the demo. The tanh activation function is used in this demo. The
weights and biases are random. The change in shape from input to output is the result of the activation
function.

7.7 Determining the Probability
7.7.1 Problem
We want to get a probability from neural net outputs.

7.7.2 Solution
Implement the Softmax function. This will be used for the output nodes of our network.

106

CHAPTER 7 FACE RECOGNITION WITH DEEP LEARNING

Figure 7.9: The two outputs from the demo function are shown vs. the two inputs.

0 10 20 30 40 50 60 70 80 90 100

step

-1

0

1
x 1

0 10 20 30 40 50 60 70 80 90 100

step

-1

0

1

x 2

0 10 20 30 40 50 60 70 80 90 100

step

0

1

2

y 1

0 10 20 30 40 50 60 70 80 90 100

step

-1

0

1

y 2

7.7.3 How It Works
Given a set of inputs, the Softmax function, a generalization of the logistic function, calculates a set of
positive values p that add to 1. It is

p j =
eq j

∑N
k=1 e

qk
(7.3)

where q are the inputs and N is the number of inputs.
The function is implemented in Softmax.m.

function [p, pMax, kMax] = Softmax(q)

% Demo
if(nargin == 0)

q = [1,2,3,4,1,2,3];
[p, pMax, kMax] = Softmax(q)
sum(p)
clear p
return

end

q = reshape(q,[],1);
n = length(q);
p = zeros(1,n);

107

CHAPTER 7 FACE RECOGNITION WITH DEEP LEARNING

den = sum(exp(q));

for k = 1:n
p(k) = exp(q(k))/den;

end

The results of the demo are

>> Softmax
p =

0.0236 0.0643 0.1747 0.4748 0.0236 0.0643 0.1747

pMax =
0.4748

kMax =
4

ans =
1.0000

The last number is the sum of p, which should be (and is) 1.

7.8 Test the Neural Network
7.8.1 Problem
We want to integrate convolution, pooling, a fully connected layer, and Softmax.

7.8.2 Solution
The solution is write a convolutional neural net. We integrate the convolution, pooling, fully connected
net, and Softmax functions. We then test it with randomly generated weights.

7.8.3 How It Works
Figure 7.10 shows the image processing neural network. It has one convolutional layer, one pooling
layer, and a fully connected layer, and the final layer is the Softmax.

>> TestNN
Image IMG_3886.png has a 13.1% chance of being a cat

As expected, the neural net does not identify the cat! The code in ConvolutionNN that performs the
test is shown below.

function r = NeuralNet(d, t, ˜)
%% Neural net function

% Convolve the image

yCL = ConvolutionLayer(t, d.cL);
yPool = Pool(yCL, d.pool.n, d.pool.type);
yFC = FullyConnectedNN(yPool, d.fCNN);
[˜,r] = Softmax(yFC);

if(nargin > 1)

108

CHAPTER 7 FACE RECOGNITION WITH DEEP LEARNING

Figure 7.10: Neural net for the image processing.

Training

Weights

Convolution
Layer

Pooling
Layer

Fully
Connected

Layer
Softmax

Image

NewFigure('ConvolutionNN');
subplot(3,1,1);
mesh(yCL);
title('Convolution Layer')
subplot(3,1,2);

mesh(yPool);
title('Pool Layer')
subplot(3,1,3);

mesh(yFC);
title('Fully Connected Layer')

end

Figure 7.11 shows the output of the various stages.

7.9 Recognizing an Image
7.9.1 Problem
We want to determine if an image is that of a cat.

7.9.2 Solution
We train the neural network with a series of cat images. We then use one picture from the training set
and a separate picture and compute the probabilities that they are cats.

109

CHAPTER 7 FACE RECOGNITION WITH DEEP LEARNING

Figure 7.11: Stages in the convolutional neural net processing.

7.9.3 How It Works
We run the script TrainNN to see if the input image is a cat.

%% Train a neural net
% Trains the net from the images in the folder.

folderPath = './Cat10224';
[s, name] = ImageArray(folderPath, 4);
d = ConvolutionalNN;

% Use all but the last
s = {s{1:end-1}};

% This may take awhile
d = ConvolutionalNN('train', d, t);

% Test the net using the last image
[d, r] = ConvolutionalNN('test', d, s{end});

fprintf(1,'Image %s has a %4.1f%% chance of being a cat\n',name{end},100*r);

The script returns that the image is probably a cat.

110

CHAPTER 7 FACE RECOGNITION WITH DEEP LEARNING

>> TrainNN
Image IMG_3886.png has a 56.0% chance of being a cat

We can improve the results with

• More images

• More features (masks)

• Changing the connections in the fully connected layer

• Adding the ability of ConvolutionalNN to handle RGB images directly

• Changing ConvolutionalNN

Summary
This chapter has demonstrated facial recognition using MATLAB. Convolutional neural nets were used
to process pictures of cats for learning. When trained, the neural net was asked to identify other pictures
to determine if they were pictures of a cat. Table 7.1 lists the code introduced in this chapter.

Table 7.1: Chapter Code Listing

File Description
Activation Generate activation functions
ImageArray Read in images in a folder and convert to grayscale
ConvolutionalNN Implement a convolutional neural net
ConvolutionLayer Implement a convolutional layer
Convolve Convolve a two-dimensional array using a mask
Pool Pool a two-dimensional array
FullyConnectedNN Implement a fully connected neural network
ScaleImage Scale an image
Softmax Implement the Softmax function
TrainNN Train the convolutional neural net
TestNN Test the convolutional neural net
TrainingData.mat Data from TestNN

111

CHAPTER 7 FACE RECOGNITION WITH DEEP LEARNING

Reference
[1] Matthijs Hollemans. Convolutional neural networks on the iPhone

with VGGNet. http://matthijshollemans.com/2016/08/30/
vggnet-convolutional-neural-network-iphone/, 2016.

112

http://matthijshollemans.com/2016/08/30/vggnet-convolutional-neural-network-iphone/
http://matthijshollemans.com/2016/08/30/vggnet-convolutional-neural-network-iphone/

CHAPTER 8

Data Classification

In this chapter we will develop the theory for binary decision trees. Decision trees can be used to classify
data. Binary trees are the easiest to implement. We will create functions for the decision trees and to
generate sets of data to classify.

8.1 Generate Classification Test Data
8.1.1 Problem
We want to generate a set of training and testing data.

8.1.2 Solution
Write a function using rand to generate data.

8.1.3 How It Works
The function ClassifierSet generates random data and assigns them to classes. Classes are gen-
erated by adding polygons that encompass the data. Any polygon can be used. The function randomly
places points on a grid and then adds boundaries for the sets defined by polygons. You specify a set of
vertices to be used in the set boundaries and the faces that define the set. The following code generates
the sets:

function p = ClassifierSets(n, xRange, yRange, name, v, f, setName)

% Demo
if(nargin < 1)

v = [0 0;0 4; 4 4; 4 0; 0 2; 2 2; 2 0;2 1;4 1;2 1];
f = {[5 6 7 1] [5 2 3 9 10 6] [7 8 9 4]};
ClassifierSets(5, [0 4], [0 4], {'width', 'length'}, v, f);
return

end

if(nargin < 7)
setName = 'Classifier Sets';

end

© Michael Paluszek, Stephanie Thomas 2017
M. Paluszek and S. Thomas,MATLAB Machine Learning, DOI 10.1007/978-1-4842-2250-8 8

113

CHAPTER 8 DATA CLASSIFICATION

p.x = (xRange(2) - xRange(1))*(rand(n,n)-0.5) + mean(xRange);
p.y = (yRange(2) - yRange(1))*(rand(n,n)-0.5) + mean(yRange);
p.m = Membership(p, v, f);

NewFigure(setName);
m = length(f);
c = rand(m,3);
for k = 1:n

for j = 1:n
plot(p.x(k,j),p.y(k,j),'marker','o','MarkerEdgeColor','k')
hold on

end
end
for k = 1:m

patch('vertices',v,'faces',f{k},'facecolor',c(k,:),'facealpha',0.1)
end

xlabel(name{1});
ylabel(name{2});
grid

function z = Membership(p, v, f)

n = size(p.x,1);
m = size(p.x,2);
z = zeros(n,m);
for k = 1:n

for j = 1:m
for i = 1:length(f)

vI = v(f{i},:)';
q = [p.x(k,j) p.y(k,j)];
r = PointInPolygon(q, vI);
if(r == 1)

z(k,j) = i;
break;

end
end

end
end

A typical set is shown in Figure 8.1. The function color-codes the points to match the set color. Note
that the colors are chosen randomly. The patch function is used to generate the polygons. The code
shows a range of graphics coding including the use of graphics parameters.

114

CHAPTER 8 DATA CLASSIFICATION

Figure 8.1: Classifier set.

This function can generate test sets or demonstrate the trained decision tree. The drawing shows that
the classification regions are boxes. ClassifierSets randomly puts points in the regions. It figures
out which region each point is in using this code in the function:

function r = PointInPolygon(p, v)

m = size(v,2);

% All outside
r = 0;

% Put the first point at the end to simplify the looping
v = [v v(:,1)];

for i = 1:m
j = i + 1;
v2J = v(2,j);
v2I = v(2,i);
if (((v2I > p(2)) ˜= (v2J > p(2))) && ...

(p(1) < (v(1,j) - v(1,i)) * (p(2) - v2I) / (v2J - v2I) + v(1,i)))
r = ˜r;

end
end

115

CHAPTER 8 DATA CLASSIFICATION

This code can determine if a point is inside a polygon defined by a set of vertices. It is used frequently
in computer graphics and in games when you need to know if one object’s vertex is in another polygon.
You could correctly argue that this could replace our decision tree for this type of problem. However, a
decision tree can compute membership for more complex sets of data. Our classifier set is simple and
makes it easy to validate the results.

8.2 Drawing Decision Trees
8.2.1 Problem
We want to draw a binary decision tree to show decision tree thinking.

8.2.2 Solution
The solution is to use MATLAB graphics functions to draw a tree.

8.2.3 How It Works
The function DrawBinaryTree draws any binary tree. You pass it a data structure with the decision
criteria in a cell array. The boxes start from the left and go row by row. In a binary tree the number of
rows is related to the number of boxes through the formula for a geometric series:

m= log2(n) (8.1)

where m is the number of rows and n is the number of boxes. Therefore, the function can compute the
number of rows.

The function starts by checking the number of inputs and either runs the demo or returns the default
data structure. The name input is optional. It then steps through the boxes assigning them to rows based
on it being a binary tree. The first row has one box, the next two boxes, the following four boxes, etc. As
this is a geometric series, it will soon get unmanageable! This points to a problem with decision trees. If
they have a depth of more than four, even drawing them is impossible.

As it draws the boxes it computes the bottom and top points that will be the anchors for the lines
between the boxes. After drawing all the boxes it draws all the lines.

All of the drawing functionality is in the subfunction DrawBoxes. This draws a box using the
patch function and the text using the text function. Notice the extra arguments in text. The most
interesting is ’HorizontalAlignment’. This allows you to easily center text in the box.

text(x+w/2,y + h/2,t,'fontname',d.font,'fontsize',d.fontSize,
'HorizontalAlignment','center');

Setting ’facecolor’ to [1 1 1] makes the face white and leaves the edges black. As with all
MATLAB graphics there are dozens of properties that you can edit to produce beautiful graphics. The
following listing shows the code.

%% DRAWBINARYTREE - Draw a binary tree in a new figure
%% Forms:
% DrawBinaryTree(d, name)
% d = DrawBinaryTree % default data structure
%
%% Description
% Draws a binary tree. All branches are drawn. Inputs in d.box go from left
% to right by row starting with the row with only one box.
%
%% Inputs
% d (.) Data structure

116

CHAPTER 8 DATA CLASSIFICATION

% .w (1,1) Box width
% .h (1,1) Box height
% .rows (1,1) Number of rows in the tree
% .fontSize (1,1) Font size
% .font (1,:) Font name
% .box {:} Text for each box
% name (1,:) Figure name
%
%% Outputs
% d (.) Data structure

function d = DrawBinaryTree(d, name)

% Demo
if(nargin < 1)

if(nargout == 0)
Demo

else
d = DefaultDataStructure;

end
return

end

if(nargin < 2)
name = 'Binary Tree';

end

NewFigure(name);

m = length(d.box);
nRows = ceil(log2(m+1));
w = d.w;
h = d.h;
i = 1;
x = -w/2;
y = 1.5*nRows*h;
nBoxes = 1;
bottom = zeros(m,2);
top = zeros(m,2);
rowID = cell(nRows,1);
for k = 1:nRows

for j = 1:nBoxes
bottom(i,:) = [x+w/2 y];
top(i,:) = [x+w/2 y+h];
DrawBox(d.box{i},x,y,w,h,d);
rowID{k} = [rowID{k} i];
i = i + 1;
x = x + 1.5*w;
if(i > length(d.box))

break;
end

end

117

CHAPTER 8 DATA CLASSIFICATION

nBoxes = 2*nBoxes;
x = -(0.25+0.5*(nBoxes/2-1))*w - nBoxes*w/2;
y = y - 1.5*h;

end

% Draw the lines
for k = 1:length(rowID)-1

iD = rowID{k};
i0 = 0;
% Work from left to right of the current row
for j = 1:length(iD)

x(1) = bottom(iD(j),1);
y(1) = bottom(iD(j),2);
iDT = rowID{k+1};
if(i0+1 > length(iDT))

break;
end
for i = 1:2

x(2) = top(iDT(i0+i),1);
y(2) = top(iDT(i0+i),2);
line(x,y);

end
i0 = i0 + 2;

end
end
axis off

function DrawBox(t, x, y, w, h, d)
%% Draw boxes and text

v = [x y 0;x y+h 0; x+w y+h 0;x+w y 0];

patch('vertices',v,'faces',[1 2 3 4],'facecolor',[1;1;1]);

text(x+w/2,y + h/2,t,'fontname',d.font,'fontsize',d.fontSize,'
HorizontalAlignment','center');

function d = DefaultDataStructure
%% Default data structure

d = struct();
d.fontSize = 12;
d.font = 'courier';
d.w = 1;
d.h = 0.5;
d.box = {};

function Demo
%% Demo

d = DefaultDataStructure;
d.box{1} = 'a > 0.1';
d.box{2} = 'b > 0.2';

118

CHAPTER 8 DATA CLASSIFICATION

d.box{3} = 'b > 0.3';
d.box{4} = 'a > 0.8';
d.box{5} = 'b > 0.4';
d.box{6} = 'a > 0.2';
d.box{7} = 'b > 0.3';

DrawBinaryTree(d);

The demo creates three rows. It starts with the default data structure. You only have to add strings for
the decision points. You can create them using sprintf. For example, for the first box you could write

s = sprintf('%s %s %3.1f','a','>',0.1);

The relationship could be added with an if-else-end construct. You can see this done in
DecisionTree. The following demo draws a binary tree:

d.box = {};

function Demo
%% Demo

d = DefaultDataStructure;
d.box{1} = 'a > 0.1';
d.box{2} = 'b > 0.2';
d.box{3} = 'b > 0.3';
d.box{4} = 'a > 0.8';
d.box{5} = 'b > 0.4';
d.box{6} = 'a > 0.2';
d.box{7} = 'b > 0.3';

The binary tree resulting from the demo is shown in Figure 8.2. The text in the boxes could be
anything you want.

119

CHAPTER 8 DATA CLASSIFICATION

Figure 8.2: Binary tree

b > 0.2

b > 0.4

b > 0.3

a > 0.2

a > 0.1

a > 0.8 b > 0.3

8.3 Decision Tree Implementation
Decision trees are the main focus of this chapter. We’ll start by looking at how we determine if our
decision tree is working correctly. We’ll then hand-build a decision tree and finally write learning code
to generate the decisions for each block of the tree.

8.3.1 Problem
We need to measure the homogeneity of a set of data at different nodes on the decision tree.

8.3.2 Solution
The solution is to implement the Gini impurity measure for a set of data.

8.3.3 How It Works
The homogeneity measure is called the information gain (IG).

The IG is defined as the increase in information by splitting at the node. This is

ΔI = I(p)− Nc1

Np
I(c1)−

Nc2

Np
I(c2) (8.2)

where I is the impurity measure and N is the number of samples at that node. If our tree is working
it should go down, eventually to zero or to a very small number. In our training set we know the class
of each data point. Therefore, we can determine the IG. Essentially, we have gained information if the
mixing decreases in the child nodes. For example, in the first node all the data are mixed. In the two
child nodes we expect that each child node will have more of one class than does the other child node.
Essentially, we look at the percentages of classes in each node and look for the maximum increase in
nonhomogeneity.

120

CHAPTER 8 DATA CLASSIFICATION

There are three impurity measures:

• Gini impurity

• Entropy

• Classification error

The Gini impurity is the criterion to minimize the probability of misclassification. We don’t want to push
a sample into the wrong category.

IG = 1−
c

∑
1
p(i|t)2 (8.3)

p(i|t) is the proportion of the samples in class ci at node t. For a binary class, entropy is either zero or
one.

IE = 1−
c

∑
1
p(i|t) log2 p(i|t) (8.4)

The classification error is
IC = 1−max p(i|t) (8.5)

We will use the Gini impurity in the decision tree. The following code implements the Gini measure.

function [i, d] = HomogeneityMeasure(action, d, data)

if(nargin == 0)
if(nargout == 1)

i = DefaultDataStructure;
else

Demo;
end
return

end

switch lower(action)
case 'initialize'

d = Initialize(d, data);
i = d.i;

case 'update'
d = Update(d, data);
i = d.i;

otherwise
error('%s is not an available action',action);

end

function d = Update(d, data)
%% Update

newDist = zeros(1,length(d.class));

m = reshape(data,[],1);
c = d.class;
n = length(m);

121

CHAPTER 8 DATA CLASSIFICATION

if(n > 0)
for k = 1:length(d.class)

j = find(m==d.class(k));
newDist(k) = length(j)/n;

end
end

d.i = 1 - sum(newDist.ˆ2);

d.dist = newDist;

function d = Initialize(d, data)
%% Initialize

m = reshape(data,[],1);

c = 1:max(m);

n = length(m);

d.dist = zeros(1,c(4));
d.class = c;

if(n > 0)
for k = 1:length(c)

j = find(m==c(k));
d.dist(k) = length(j)/n;

end
end

d.i = 1 - sum(d.dist.ˆ2);

function d = DefaultDataStructure
%% Default data structure
d.dist = [];
d.data = [];
d.class = [];
d.i = 1;

The demo is shown below.

function d = Demo
%% Demo

data = [1 2 3 4 3 1 2 4 4 1 1 1 2 2 3 4]';

d = HomogeneityMeasure;
[i, d] = HomogeneityMeasure('initialize', d, data)

data = [1 1 1 2 2];

[i, d] = HomogeneityMeasure('update', d, data)

122

CHAPTER 8 DATA CLASSIFICATION

data = [1 1 1 1];

[i, d] = HomogeneityMeasure('update', d, data)

data = [];

[i, d] = HomogeneityMeasure('update', d, data)

>> HomogeneityMeasure
i =

0.7422
d =

dist: [0.3125 0.2500 0.1875 0.2500]
data: []

class: [1 2 3 4]
i: 0.7422

i =

0.4800
d =

dist: [0.6000 0.4000 0 0]
data: []

class: [1 2 3 4]
i: 0.4800

i =

0
d =

dist: [1 0 0 0]
data: []

class: [1 2 3 4]
i: 0

i =

1
d =

dist: [0 0 0 0]
data: []

class: [1 2 3 4]
i: 1

The second-to-last set has a zero, which is the desired value. If there are no inputs, it returns 1 since by
definition for a class to exist it must have members.

123

CHAPTER 8 DATA CLASSIFICATION

8.4 Implementing a Decision Tree
8.4.1 Problem
We want to implement a decision tree for classifying data.

8.4.2 Solution
The solution is to write a binary decision tree function in MATLAB.

8.4.3 How It Works
A decision tree [1] breaks down data by asking a series of questions about the data. Our decision

trees will be binary in that there will a yes or no answer to each question. For each feature in the data we
ask one question per node. This always splits the data into two child nodes. We will be looking at two
parameters that determine class membership. The parameters will be numerical measurements.

At the following nodes we ask additional questions, further splitting the data. Figure 8.3 shows the
parent/child structure. We continue this process until the samples at each node are in one of the classes.

Figure 8.3: Parent/child nodes.

Feature Question Parent Node

No Yes

Feature Question Feature Question Child Node

At each node we want to ask the question that provides us with the most information about which class
in which our samples reside.

In constructing our decision tree for a two-parameter classification we have two decisions at each
node:

• Which parameter to check

• What level to check

For example, for our two parameters we would have either

p1 > ak (8.6)

p2 > bk (8.7)

This can be understood with a very simple case. Suppose we have four sets in a two-dimensional space
divided by one horizontal and one vertical line. Our sets can be generated with the following code.

This is done using the Gini values given above. We use fminbnd at each node, once for each of the
two parameters. There are two actions, ”train” and ”test.” ”train” creates the decision tree and ”test” runs
the generated decision tree. You an also input your own decision tree. FindOptimalAction finds
the parameter that minimizes the inhomogeneity on both sides of the division. The function called by
fminbnd is RHSGT. We only implement the greater-than action.

124

CHAPTER 8 DATA CLASSIFICATION

The structure of the testing function is very similar to the training function.

%% DECISIONTREE - implements a decision tree
%% Form
% [d, r] = DecisionTree(action, d, t)
%
%% Description
% Implements a binary classification tree.
% Type DecisionTree for a demo using the SimpleClassifierExample
%
%% Inputs
% action (1,:) Action 'train', 'test'
% d (.) Data structure
% t {:} Inputs for training or testing
%
%% Outputs
% d (.) Data structure
% r (:) Results
%
%% References
% None

function [d, r] = DecisionTree(action, d, t)

if(nargin < 1)
if(nargout > 0)

d = DefaultDataStructure;
else

Demo;
end
return

end

switch lower(action)
case 'train'

d = Training(d, t);
case 'test'

for k = 1:length(d.box)
d.box(k).id = [];

end
[r, d] = Testing(d, t);

otherwise
error('%s is not an available action',action);

end

function d = Training(d, t)
%% Training function
[n,m] = size(t.x);
nClass = max(t.m);
box(1) = AddBox(1, 1:n*m, []);
box(1).child = [2 3];
[˜, dH] = HomogeneityMeasure('initialize', d, t.m);

125

CHAPTER 8 DATA CLASSIFICATION

class = 0;
nRow = 1;
kR0 = 0;
kNR0 = 1; % Next row;
kInRow = 1;
kInNRow = 1;
while(class < nClass)

k = kR0 + kInRow;
idK = box(k).id;
if(isempty(box(k).class))

[action, param, val, cMin] = FindOptimalAction(t, idK, d.xLim, d.yLim,
dH);

box(k).value = val;
box(k).param = param;
box(k).action = action;
x = t.x(idK);
y = t.y(idK);
if(box(k).param == 1) % x

id = find(x > d.box(k).value);
idX = find(x <= d.box(k).value);

else % y
id = find(y > d.box(k).value);
idX = find(y <= d.box(k).value);

end
% Child boxes
if(cMin < d.cMin)

class = class + 1;
kN = kNR0 + kInNRow;
box(k).child = [kN kN+1];
box(kN) = AddBox(kN, idK(id), class);
class = class + 1;
kInNRow = kInNRow + 1;
kN = kNR0 + kInNRow;
box(kN) = AddBox(kN, idK(idX), class);
kInNRow = kInNRow + 1;

else
kN = kNR0 + kInNRow;
box(k).child = [kN kN+1];
box(kN) = AddBox(kN, idK(id));
kInNRow = kInNRow + 1;
kN = kNR0 + kInNRow;
box(kN) = AddBox(kN, idK(idX));
kInNRow = kInNRow + 1;

end

% Update current row
kInRow = kInRow + 1;
if(kInRow > nRow)

kR0 = kR0 + nRow;
nRow = 2*nRow;

126

CHAPTER 8 DATA CLASSIFICATION

kNR0 = kNR0 + nRow;
kInRow = 1;
kInNRow = 1;

end
end

end

for k = 1:length(box)
if(˜isempty(box(k).class))

box(k).child = [];
end
box(k).id = [];
fprintf(1,'Box %d action %s Value %4.1f %d\n',k,box(k).action,box(k).value

,ischar(box(k).action));
end

d.box = box;

function [action, param, val, cMin] = FindOptimalAction(t, iD, xLim, yLim,
dH)

c = zeros(1,2);
v = zeros(1,2);

x = t.x(iD);
y = t.y(iD);
m = t.m(iD);
[v(1),c(1)] = fminbnd(@RHSGT, xLim(1), xLim(2), optimset('TolX',1e-16), x,

m, dH);
[v(2),c(2)] = fminbnd(@RHSGT, yLim(1), yLim(2), optimset('TolX',1e-16), y,

m, dH);

% Find the minimum
[cMin, j] = min(c);

action = '>';
param = j;

val = v(j);

function q = RHSGT(v, u, m, dH)
%% RHS greater than function for fminbnd

j = find(u > v);
q1 = HomogeneityMeasure('update', dH, m(j));
j = find(u <= v);
q2 = HomogeneityMeasure('update', dH, m(j));
q = q1 + q2;

function [r, d] = Testing(d, t)
%% Testing function
k = 1;

127

CHAPTER 8 DATA CLASSIFICATION

[n,m] = size(t.x);
d.box(1).id = 1:n*m;

class = 0;
while(k <= length(d.box))

idK = d.box(k).id;
v = d.box(k).value;

switch(d.box(k).action)
case '>'

if(d.box(k).param == 1)
id = find(t.x(idK) > v);
idX = find(t.x(idK) <= v);

else
id = find(t.y(idK) > v);
idX = find(t.y(idK) <= v);

end
d.box(d.box(k).child(1)).id = idK(id);
d.box(d.box(k).child(2)).id = idK(idX);

case '<='
if(d.box(k).param == 1)

id = find(t.x(idK) <= v);
idX = find(t.x(idK) > v);

else
id = find(t.y(idK) <= v);
idX = find(t.y(idK) > v);

end
d.box(d.box(k).child(1)).id = idK(id);
d.box(d.box(k).child(2)).id = idK(idX);

otherwise
class = class + 1;
d.box(k).class = class;

end
k = k + 1;

end

r = cell(class,1);

for k = 1:length(d.box)
if(˜isempty(d.box(k).class))

r{d.box(k).class,1} = d.box(k).id;
end

end

128

CHAPTER 8 DATA CLASSIFICATION

8.5 Creating a Hand-Made Decision Tree
8.5.1 Problem
We want to test a hand-made decision tree.

8.5.2 Solution
The solution is to write script to test a hand-made decision tree.

8.5.3 How It Works
We write the test script shown below. It uses the ’test’ action for DecisionTree.

% Create the decision tree
d = DecisionTree;

% Vertices for the sets
v = [0 0; 0 4; 4 4; 4 0; 2 4; 2 2; 2 0; 0 2; 4 2];

% Faces for the sets
f = { [6 5 2 8] [6 7 4 9] [6 9 3 5] [1 7 6 8] };

% Generate the testing set
pTest = ClassifierSets(5, [0 4], [0 4], {'width', 'length'}, v, f, '

Testing Set');

% Test the tree
[d, r] = DecisionTree('test', d, pTest);

q = DrawBinaryTree;
c = 'xy';
for k = 1:length(d.box)

if(˜isempty(d.box(k).action))
q.box{k} = sprintf('%c %s %4.1f',c(d.box(k).param),d.box(k).action,d.box

(k).value);
else

q.box{k} = sprintf('Class %d',d.box(k).class);
end

end
DrawBinaryTree(q);

m = reshape(pTest.m,[],1);

for k = 1:length(r)
fprintf(1,'Class %d\n',k);
for j = 1:length(r{k})

fprintf(1,'%d: %d\n',r{k}(j),m(r{k}(j)));
end

end

129

CHAPTER 8 DATA CLASSIFICATION

SimpleClassifierDemo uses the hand-built example in DecisionTree.

kN = kNR0 + kInNRow;
box(kN) = AddBox(kN, idK(idX));
kInNRow = kInNRow + 1;

end

% Update current row
kInRow = kInRow + 1;
if(kInRow > nRow)

kR0 = kR0 + nRow;
nRow = 2*nRow;
kNR0 = kNR0 + nRow;
kInRow = 1;
kInNRow = 1;

end
end

end

for k = 1:length(box)
if(˜isempty(box(k).class))

box(k).child = [];
end
box(k).id = [];
fprintf(1,'Box %d action %s Value %4.1f %d\n',k,box(k).action,box(k).value

,ischar(box(k).action));
end

d.box = box;

function [action, param, val, cMin] = FindOptimalAction(t, iD, xLim, yLim,
dH)

c = zeros(1,2);
v = zeros(1,2);

x = t.x(iD);
y = t.y(iD);
m = t.m(iD);
[v(1),c(1)] = fminbnd(@RHSGT, xLim(1), xLim(2), optimset('TolX',1e-16), x,

m, dH);
[v(2),c(2)] = fminbnd(@RHSGT, yLim(1), yLim(2), optimset('TolX',1e-16), y,

m, dH);

% Find the minimum
[cMin, j] = min(c);

action = '>';
param = j;

val = v(j);

130

CHAPTER 8 DATA CLASSIFICATION

function q = RHSGT(v, u, m, dH)
%% RHS greater than function for fminbnd

j = find(u > v);
q1 = HomogeneityMeasure('update', dH, m(j));
j = find(u <= v);
q2 = HomogeneityMeasure('update', dH, m(j));

The action for the last four box fields as empty strings. This means that no further operations
are performed. This happens in the last boxes in the decision tree. In those boxes the class field will
contain the class of that box. The following shows the testing function in DecisionTree.

function [r, d] = Testing(d, t)
%% Testing function
k = 1;

[n,m] = size(t.x);
d.box(1).id = 1:n*m;

class = 0;
while(k <= length(d.box))

idK = d.box(k).id;
v = d.box(k).value;

switch(d.box(k).action)
case '>'

if(d.box(k).param == 1)
id = find(t.x(idK) > v);
idX = find(t.x(idK) <= v);

else
id = find(t.y(idK) > v);
idX = find(t.y(idK) <= v);

end
d.box(d.box(k).child(1)).id = idK(id);
d.box(d.box(k).child(2)).id = idK(idX);

case '<='
if(d.box(k).param == 1)

id = find(t.x(idK) <= v);
idX = find(t.x(idK) > v);

else
id = find(t.y(idK) <= v);
idX = find(t.y(idK) > v);

end
d.box(d.box(k).child(1)).id = idK(id);
d.box(d.box(k).child(2)).id = idK(idX);

otherwise
class = class + 1;
d.box(k).class = class;

end
k = k + 1;

end

131

CHAPTER 8 DATA CLASSIFICATION

r = cell(class,1);

for k = 1:length(d.box)
if(˜isempty(d.box(k).class))

r{d.box(k).class,1} = d.box(k).id;
end

end

Figure 8.4 shows the results. There are four rectangular areas, which are our sets.

Figure 8.4: Data and classes in the test set.

132

CHAPTER 8 DATA CLASSIFICATION

We can create a decision tree by hand as shown Figure 8.5.

Figure 8.5: A manually created decision tree. The drawing is generated by DecisionTree. The last
row of boxes is the data sorted into the four classes.

x > 2.0

y > 2.0 y > 2.0

Class 2 Class 3Class 1 Class 4

The decision tree sorts the samples into the four sets. In this case we know the boundaries and can
use them to write the inequalities. In software we will have to determine what values provide the shortest
branches. The following is the output. The decision tree properly classifies all of the data.

>> SimpleClassifierDemo
Class 1
7: 3
9: 3
13: 3
15: 3
Class 2
2: 2
3: 2
11: 2
14: 2
16: 2
17: 2
21: 2
23: 2
25: 2

133

CHAPTER 8 DATA CLASSIFICATION

Class 3
4: 1
8: 1
10: 1
12: 1
18: 1
19: 1
20: 1
22: 1
Class 4
1: 4
5: 4
6: 4
24: 4

The class numbers and numbers in the list aren’t necessarily the same since the function does know the
names of the classes.

8.6 Training and Testing the Decision Tree
8.6.1 Problem
We want to train our decision tree and test the results.

8.6.2 Solution
We replicated the previous recipe only this time we have DecisionTree create the decision tree.

8.6.3 How It Works
The following script trains and tests the decision tree. It is very similar to the code for the hand-built
decision tree.

% Vertices for the sets
v = [0 0; 0 4; 4 4; 4 0; 2 4; 2 2; 2 0; 0 2; 4 2];

% Faces for the sets
f = { [6 5 2 8] [6 7 4 9] [6 9 3 5] [1 7 6 8] };

% Generate the training set
pTrain = ClassifierSets(40, [0 4], [0 4], {'width', 'length'}, v, f, '

Training Set');

% Create the decision tree
d = DecisionTree;
d = DecisionTree('train', d, pTrain);

% Generate the testing set
pTest = ClassifierSets(5, [0 4], [0 4], {'width', 'length'}, v, f, '

Testing Set');

% Test the tree
[d, r] = DecisionTree('test', d, pTest);

q = DrawBinaryTree;

134

CHAPTER 8 DATA CLASSIFICATION

c = 'xy';
for k = 1:length(d.box)

if(˜isempty(d.box(k).action))
q.box{k} = sprintf('%c %s %4.1f',c(d.box(k).param),d.box(k).action,d.box

(k).value);
else

q.box{k} = sprintf('Class %d',d.box(k).class);
end

end
DrawBinaryTree(q);

m = reshape(pTest.m,[],1);

for k = 1:length(r)
fprintf(1,'Class %d\n',k);
for j = 1:length(r{k})

fprintf(1,'%d: %d\n',r{k}(j),m(r{k}(j)));
end

end

It uses ClassifierSets to generate the training data. The output includes the coordinates and
the sets in which they fall. We then create the default data structure and call DecisionTree in training
mode. The training takes place in this code:

function d = Training(d, t)
%% Training function
[n,m] = size(t.x);
nClass = max(t.m);
box(1) = AddBox(1, 1:n*m, []);
box(1).child = [2 3];
[˜, dH] = HomogeneityMeasure('initialize', d, t.m);

class = 0;
nRow = 1;
kR0 = 0;
kNR0 = 1; % Next row;
kInRow = 1;
kInNRow = 1;
while(class < nClass)

k = kR0 + kInRow;
idK = box(k).id;
if(isempty(box(k).class))

[action, param, val, cMin] = FindOptimalAction(t, idK, d.xLim, d.yLim,
dH);

box(k).value = val;
box(k).param = param;
box(k).action = action;
x = t.x(idK);
y = t.y(idK);
if(box(k).param == 1) % x

id = find(x > d.box(k).value);
idX = find(x <= d.box(k).value);

else % y

135

CHAPTER 8 DATA CLASSIFICATION

id = find(y > d.box(k).value);
idX = find(y <= d.box(k).value);

end
% Child boxes
if(cMin < d.cMin)

class = class + 1;
kN = kNR0 + kInNRow;
box(k).child = [kN kN+1];
box(kN) = AddBox(kN, idK(id), class);
class = class + 1;
kInNRow = kInNRow + 1;
kN = kNR0 + kInNRow;
box(kN) = AddBox(kN, idK(idX), class);
kInNRow = kInNRow + 1;

else
kN = kNR0 + kInNRow;
box(k).child = [kN kN+1];
box(kN) = AddBox(kN, idK(id));
kInNRow = kInNRow + 1;
kN = kNR0 + kInNRow;
box(kN) = AddBox(kN, idK(idX));
kInNRow = kInNRow + 1;

end

% Update current row
kInRow = kInRow + 1;
if(kInRow > nRow)

kR0 = kR0 + nRow;
nRow = 2*nRow;
kNR0 = kNR0 + nRow;
kInRow = 1;
kInNRow = 1;

end
end

end

for k = 1:length(box)
if(˜isempty(box(k).class))

box(k).child = [];
end
box(k).id = [];
fprintf(1,'Box %d action %s Value %4.1f %d\n',k,box(k).action,box(k).value

,ischar(box(k).action));
end

d.box = box;

function [action, param, val, cMin] = FindOptimalAction(t, iD, xLim, yLim,
dH)

c = zeros(1,2);

136

CHAPTER 8 DATA CLASSIFICATION

v = zeros(1,2);

x = t.x(iD);
y = t.y(iD);
m = t.m(iD);
[v(1),c(1)] = fminbnd(@RHSGT, xLim(1), xLim(2), optimset('TolX',1e-16), x,

m, dH);
[v(2),c(2)] = fminbnd(@RHSGT, yLim(1), yLim(2), optimset('TolX',1e-16), y,

m, dH);

% Find the minimum
[cMin, j] = min(c);

action = '>';
param = j;

val = v(j);

function q = RHSGT(v, u, m, dH)
%% RHS greater than function for fminbnd

j = find(u > v);
q1 = HomogeneityMeasure('update', dH, m(j));
j = find(u <= v);
q2 = HomogeneityMeasure('update', dH, m(j));
q = q1 + q2;

We use fminbnd to find the optimal switch point. We need to compute the homogeneity on both
sides of the switch and sum the values. The sum is minimized by fminbnd. This code is designed
for rectangular region classes. Other boundaries won’t necessarily work correctly. The code is fairly
involved. It needs to keep track of the box numbering to make the parent/child connections. When the
homogeneity measure is low enough, it marks the boxes as containing the classes.

The tree is shown in Figure 8.8. The training data are shown in Figure 8.6 and the testing data in
Figure 8.7. We need enough testing data to fill the classes. Otherwise, the decision tree generator may
draw the lines to encompass just the data in the training set.

137

CHAPTER 8 DATA CLASSIFICATION

Figure 8.6: The training data. A large amount of data is needed to fill the classes.

The results are similar to the simple test.

Class 1
2: 3
7: 3
9: 3
10: 3
18: 3
19: 3
Class 2
6: 2
11: 2
20: 2
22: 2
24: 2
25: 2
Class 3
3: 1
5: 1
8: 1
12: 1
13: 1

138

CHAPTER 8 DATA CLASSIFICATION

Figure 8.7: The testing data.

Figure 8.8: The tree derived from the training data. It is essentially the same as the hand-derived tree. The
values in the generated tree are not exactly 2.0.

x > 2.0

y > 2.0 y > 2.0

Class 2 Class 3Class 1 Class 4

139

CHAPTER 8 DATA CLASSIFICATION

14: 1
21: 1
23: 1
Class 4
1: 4
4: 4
15: 4
16: 4
17: 4

The generated tree separates the data effectively.

Summary
This chapter has demonstrated data classification using decision trees in MATLAB. We also wrote a new
graphics function to draw decision trees. The decision tree software is not general purpose but can serve
as a guide to more general-purpose code. Table 8.1 summarizes the code listings from the chapter.

Table 8.1: Chapter Code Listing

File Description
ClassifierSets Generates data for classification or training
DecisionTree Implements a decision tree to classify data
DrawBinaryTree Generates data for classification or training
HomogeneityMeasure Computes Gini impurity
SimpleClassifierDemo Demonstrates decision tree testing
SimpleClassifierExample Generates data for a simple problem
TestDecisionTree Tests a decision tree

140

CHAPTER 8 DATA CLASSIFICATION

Reference
[1] Sebastian Raschka. Python Machine Learning. [PACKT], 2015.

141

CHAPTER 9

Classification of Numbers Using
Neural Networks

Pattern recognition in images is a classic application of neural nets. In this case, we will look at images
of computer-generated digits and identify the digits correctly. These images will represent numbers from
scanned documents. Attempting to capture the variation in digits with algorithmic rules, considering
fonts and other factors, quickly becomes impossibly complex, but with a large number of examples, a
neural net can readily perform the task. We allow the weights in the net to perform the job of inferring
rules about how each digit may be shaped, rather than codifying them explicitly.

For the purposes of this chapter, we will limit ourselves to images of a single digit. The process of
segmenting a series of digits into individual images is one that may be solved by many techniques, not
just neural nets.

9.1 Generate Test Images with Defects
9.1.1 Problem
The first step in creating our classification system is to generate sample data. In this case, we want to
load in images of numbers for 0–9 and generate test images with defects. For our purposes, defects will
be introduced with simple Poisson or shot noise (a random number with a standard deviation of the the
square root of the pixel values).

9.1.2 Solution
We will generate the images in MATLAB by writing a digit to an axis using text, then creating an
image using print. There is an option to capture the pixel data directly from print without creating an
interim file, which we will utilize. We will extract the (16 x 16)-pixel area with our digit and then apply
the noise. We will also allow the font to be an input. See Figure 9.1 for examples.

© Michael Paluszek, Stephanie Thomas 2017
M. Paluszek and S. Thomas,MATLAB Machine Learning, DOI 10.1007/978-1-4842-2250-8 9

143

CHAPTER 9 NEURAL NETS

Figure 9.1: A sample image of the digits 0 and 1 with noise added.

9.1.3 How It Works
The code listing for CreateDigitImage is below. It allows for a font to be selected.

%% CreateDigitImage Create an image of a single digit.
% Create a 16x16 pixel image of a single digit. The intermediate figure used

to
% display the digit text is invisible.

function pixels = CreateDigitImage(num, fontname)

if nargin < 1
num = 1;

if nargin < 2
fontname = 'times';

end

fonts = listfonts;
avail = strcmp(fontname,fonts);
if ˜any(avail)

error('MachineLearning:CreateDigitImage',...
'Sorry, the font ''%s'' is not available.',fontname);

end

f = figure('Name','Digit','visible','off');
a1 = axes('Parent', f, 'box', 'off', 'units', 'pixels', 'position', [0 0 16

16]);

% 20 point font digits are 15 pixels tall (on Mac OS)
text(a1,4,11,num2str(num),'fontsize',20,'fontunits','pixels','unit','pixels'

,...
'fontname','cambria')

% Obtain image data using print and convert to grayscale
cData = print('-RGBImage','-r0');
iGray = rgb2gray(cData);

144

CHAPTER 9 NEURAL NETS

% Print image coordinate system starts from upper left of the figure, NOT
the

% bottom, so our digit is in the LAST 20 rows and the FIRST 20 columns
pixels = iGray(end-15:end,1:16);

% Apply Poisson (shot) noise; must convert the pixel values to double for
the

% operation and then convert them back to uint8 for the sum. the uint8 type
will

% automatically handle overflow above 255 so there is no need to apply a
limit.

noise = uint8(sqrt(double(pixels)).*randn(16,16));
pixels = pixels - noise;

close(f);

if nargout == 0
h = figure('name','Digit Image');
imagesc(pixels);
colormap(h,'gray');
grid on
set(gca,'xtick',1:16)
set(gca,'ytick',1:16)
colorbar

end

Note that we check that the font exists before trying to use it, and throw an error if it’s not found.
Now, we can create the training data using images generated with our new function. In the recipes

below we will use data for both a single-digit identification and a multiple-digit identification net. We
use a for loop to create a set of images and save them to a MAT-file using the helper function SaveTS.
This saves the training sets with their input and output, and indices for training and testing, in a special
structure format. Note that we scale the pixels’ values, which are nominally integers with a value from
0–255, to have values between 0–1.

%% Generate the training data
% Use a for loop to create a set of noisy images for each desired digit
% (between 0 and 9). Save the data along with indices for data to use for
% training.

digits = 0:5;
nImages = 20;
nImages = nDigits*nImages;

input = zeros(256,nImages);
output = zeros(1,nImages);
trainSets = [];
testSets = [];
kImage = 1;
for j = 1:nDigits

fprintf('Digit %d\n', digits(j));
for k = 1:nImages

pixels = CreateDigitImage(digits(j));

145

CHAPTER 9 NEURAL NETS

% scale the pixels to a range 0 to 1
pixels = double(pixels);
pixels = pixels/255;
input(:,kImage) = pixels(:);
if j == 1

output(j,kImage) = 1;
end
kImage = kImage + 1;

end
sets = randperm(10);
trainSets = [trainSets (j-1)*nImages+sets(1:5)];
testSets = [testSets (j-1)*nImages+sets(6:10)];

end

% Use 75% of the images for training and save the rest for testing
trainSets = sort(randperm(nImages,floor(0.75*nImages)));
testSets = setdiff(1:nImages,trainSets);

SaveTS(input, output, trainSets, testSets);

The helper function will ask for a filename and save the training set. You can load it at the command
line to verify the fields. Here’s an example with the training and testing sets truncated:

>> trainingData = load('Digit0TrainingTS')
trainingData =

struct with fields:

Digit0TrainingTS: [1?1 struct]
>> trainingData.Digit0TrainingTS
ans =

struct with fields:

inputs: [256?120 double]
desOutputs: [1?120 double]
trainSets: [2 8 10 5 4 18 19 12 17 14 30 28 21 27 23 37 34 36 39 38 46

48 50 41 49 57 53 51 56 54]
testSets: [1 6 9 3 7 11 16 15 13 20 29 25 26 24 22 35 32 40 33 31 43

45 42 47 44 58 55 60 52 59]

9.2 Create the Neural Net Tool
9.2.1 Problem
We want to create a Neural Net tool that can be trained to identify the digits. In this recipe we will discuss
the functions underlying the Neural Net Developer tool. This is a tool we developed in-house in the late
1990s to explore the use of neural nets. It does not use the latest graphical user interface (GUI)-building
features of MATLAB, so we will not go into detail about the GUI itself although the full GUI is available
in the companion code.

146

CHAPTER 9 NEURAL NETS

9.2.2 Solution
The solution is to use a multilayer feedforward (MLFF) neural network to classify digits. In this type of
network, each neuron depends only on the inputs it receives from the previous layer. We will start with
a set of images for each of the 10 digits and create a training set by transforming the digits. We will then
see how well our deep learning network performs at identifying the training digits and then other digits
similarly transformed.

9.2.3 How It Works
The basis of the neural net is the neuron function. Our neuron function provides six different activation
types: sign, sigmoid mag, step, log, tanh, and sum. [2] This can be seen in Figure 9.2.

Figure 9.2: Available neuron activation functions: sign, sigmoid mag, step, log, tanh, and sum.

-5 -4 -3 -2 -1 0 1 2 3 4 5

Input

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Ou
tp

ut

sign Neuron

-5 -4 -3 -2 -1 0 1 2 3 4 5

Input

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Ou
tp

ut

mag Neuron

-5 -4 -3 -2 -1 0 1 2 3 4 5

Input

0

0.2

0.4

0.6

0.8

1

Ou
tp

ut

step Neuron

Princeton Satellite Systems

Output

-5 -4 -3 -2 -1 0 1 2 3 4 5
Input

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Ou
tp

ut

Log Neuron

-5 -4 -3 -2 -1 0 1 2 3 4 5

Input

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Ou
tp

ut

tanh Neuron

-5 -4 -3 -2 -1 0 1 2 3 4 5

Input

-5

-4

-3

-2

-1

0

1

2

3

4

5

Ou
tp

ut

sum Neuron

function [y, dYDX] = Neuron(x, type, t)

%% NEURON A neuron function for neural nets.
% x may have any dimension. However, if plots are desired x must be 2
% dimensional. The default type is tanh.
%
% The log function is 1./(1 + exp(-x))
% The mag function is x./(1 + abs(x))
%
%% Form:
% [y, dYDX] = Neuron(x, type, t)
%% Inputs
% x (:,...) Input
% type (1,:) 'tanh', 'log', 'mag', 'sign', 'step', 'sum'
% t (1,1) Threshold for type = 'step'

147

CHAPTER 9 NEURAL NETS

%
%% Outputs
% y (:,...) Output
% dYDX (:,...) Derivative

%% Reference: Omidivar, O., and D.L. Elliot (Eds) (1997.) "Neural Systems
% for Control." Academic Press.
% Russell, S., and P. Norvig. (1995.) Artificial Intelligence-
% A Modern Approach. Prentice-Hall. p. 583.

% Input processing
%-----------------
if(nargin < 1)

x = [];
end
if(nargin < 2)

type = [];
end
if(nargin < 3)

t = 0;
end
if(isempty(type))

type = 'log';
end
if(isempty(x))

x = sort([linspace(-5,5) 0]);
end

switch lower(deblank(type))
case 'tanh'

yX = tanh(x);
dYDX = sech(x).ˆ2;

case 'log'
% sigmoid logistic function
yX = 1./(1 + exp(-x));
dYDX = yX.*(1 - yX);

case 'mag'
d = 1 + abs(x);
yX = x./d;
dYDX = 1./d.ˆ2;

case 'sign'
yX = ones(size(x));
yX(x < 0) = -1;
dYDX = zeros(size(yX));
dYDX(x == 0) = inf;

case 'step'
yX = ones(size(x));
yX(x < t) = 0;

148

CHAPTER 9 NEURAL NETS

dYDX = zeros(size(yX));
dYDX(x == t) = inf;

case 'sum'
yX = x;
dYDX = ones(size(yX));

otherwise
error([type ' is not recognized'])

end

% Output processing
%------------------
if(nargout == 0)

PlotSet(x, yX, 'x label', 'Input', 'y label', 'Output',...
'plot title', [type ' Neuron']);

PlotSet(x, dYDX, 'x label','Input', 'y label','dOutput/dX',...
'plot title',['Derivative of ' type ' Function']);

else
y = yX;

end

Neurons are combined into the feedforward neural network using a simple data structure of layers
and weights. The input to each neuron is a combination of the signal y, the weight w, and the bias w0, as
in this line:

y = Neuron(w*y - w0, type);

The output of the network is calculated by the function NeuralNetMLFF. Note that this also out-
puts the derivatives as obtained from the neuron activation functions, for use in training.

%% NEURALNETMLFF - Computes the output of a multilayer feed-forward neural
net.

%
%% Form:
% [y, dY, layer] = NeuralNetMLFF(x, network)
%
%% Description
% Computes the output of a multilayer feed-forward neural net.
%
% The input layer is a data structure that contains the network data.
% This data structure must contain the weights and activation functions
% for each layer.
%

149

CHAPTER 9 NEURAL NETS

% The output layer is the input data structure augmented to include
% the inputs, outputs, and derivatives of each layer for each run.
%
%% Inputs
% x (n,r) n Inputs, r Runs
%
% network Data structure containing network data
% .layer(k,{1,r}) There are k layers to the network

which
% includes 1 output and k-1 hidden layers
%
% .w(m(j),m(j-1)) w(p,q) is the weight between the
% q-th output of layer j-1 and the
% p-th node of layer j (ie. the
% q-th input to the p-th output of
% layer j)
% .w0(m(j)) Biases/Thresholds
% .type(1) 'tanh', 'log', 'mag', 'sign',
% 'step'
% Only one type is allowed per layer
%
% Different weights can be entered for different runs.
%% Outputs
% y (m(k),r) Outputs
% dY (m(k),r) Derivative
% layer (k,r) Information about a desired layer j
% .x(m(j-1),1) Inputs to layer j
% .y(m(j),1) Outputs of layer j
% .dYT(m(j),1) Derivative of layer j
%
% (:) Means that the dimension is undefined.
% (n) = number of inputs to neural net
% (r) = number of runs (ie. sets of inputs)
% (k) = number of layers
% (m(j)) = number of nodes in j-th layer
%
%% References
% Nilsson, Nils J. (1998.) Artificial Intelligence:
% A New Synthesis. Morgan Kaufmann Publishers. Ch. 3.

function [y, dY, layer] = NeuralNetMLFF(x, network)

layer = network.layer;

% Input processing
if(nargin < 2)

disp('Will run an example network');
end

if(˜isfield(layer,'w'))
error('Must input size of neural net.');

end

150

CHAPTER 9 NEURAL NETS

if(˜isfield(layer,'w0'))
layer(1).w0 = [];

end

if(˜isfield(layer,'type'))
layer(1).type = [];

end

% Generate some useful sizes
nLayers = size(layer,1);
nInputs = size(x,1);
nRuns = size(x,2);

for j = 1:nLayers
if(isempty(layer(j,1).w))

error('Must input weights for all layers')
end
if(isempty(layer(j,1).w0))

layer(j,1).w0 = zeros(size(layer(j,1).w,1), 1);
end

end

nOutputs = size(layer(nLayers,1).w, 1);

% If there are multiple layers and only one type
% replicate it (the first layer type is the default)
if(isempty(layer(1,1).type))

layer(1,1).type = 'tanh';
end

for j = 2:nLayers
if(isempty(layer(j,1).type))

layer(j,1).type = layer(1,1).type;
end

end

% Set up additional storage
%--------------------------
y0 = zeros(nOutputs,nRuns);
dY = zeros(nOutputs,nRuns);

for k = 1:nLayers
[outputs,inputs] = size(layer(k,1).w);
for j = 1:nRuns

layer(k,j).x = zeros(inputs,1);
layer(k,j).y = zeros(outputs,1);
layer(k,j).dY = zeros(outputs,1);

end
end

% Process the network

151

CHAPTER 9 NEURAL NETS

% h = waitbar(0, 'Neural Net Simulation in Progress');
for j = 1:nRuns

y = x(:,j);
for k = 1:nLayers

% Load the appropriate weights and types for the given run
if(isempty(layer(k,j).w))

w = layer(k,1).w;
else

w = layer(k,j).w;
end

if(isempty(layer(k,j).w0))
w0 = layer(k,1).w0;

else
w0 = layer(k,j).w0;

end

if(isempty(layer(k,j).type))
type = layer(k,1).type;

else
type = layer(k,j).type;

end

layer(k,j).x = y;
[y, dYT] = Neuron(w*y - w0, type);

layer(k,j).y = y;
layer(k,j).dY = dYT;

end
y0(:,j) = y;
dY(:,j) = dYT;

% waitbar(j/nRuns);
end

% close(h);

if(nargout == 0)
PlotSet(1:size(x,2),y0,'x label','Step','y label','Outputs',

'figure title','Neural Net');
else

y = y0;
end

Our network will use backpropagation as a training method [1]. This is a gradient descent method and
it uses the derivatives output by the network directly. Because of this use of derivatives, any threshold
functions such as a step function are substituted with a sigmoid function for the training. The main
parameter is the learning rate α , which multiplies the gradient changes applied to the weights in each
iteration. This is implemented in NeuralNetTraining.

152

CHAPTER 9 NEURAL NETS

function [w, e, layer] = NeuralNetTraining(x, y, layer)

%% NEURALNETTRAINING Training using back propagation.
% Computes the weights for a neural net using back propagation. If no
% inputs are given it will do a demo for the network
% where node 1 and node 2 use exp functions.
%
% sin(x) -- node 1
% \ / \
% \ ---> Output
% / \ /
% sin(0.2*x) -- node 2
%
%% Form:
% [w, e, layer] = NeuralNetTraining(x, y, layer)
%% Inputs
% x (n,r) n Inputs, r Runs
%
% y (m(k),r) Desired Outputs
%
% layer (k,{1,r}) Data structure containing network data
% There are k layers to the network which
% includes 1 output and k-1 hidden layers
%
% .w(m(j),m(j-1)) w(p,q) is the weight between the
% q-th output of layer j-1 and the
% p-th nodeof layer j (ie. the q-th
% input to the p-th output of layer
% j)
% .w0(m(j)) Biases/Thresholds
% .type(1) 'tanh', 'log', 'mag', 'sign',
% 'step'
% .alpha(1) Learning rate
%
% Only one type and learning rate are allowed per
% layer
%
%% Outputs
% w (k) Weights of layer j
% .w(m(j),m(j-1)) w(p,q) is the weight between the
% q-th output of layer j-1 and the
% p-th node of layer j (ie. the q-th
% input to the p-th output of layer
% j)
% .w0(m(j)) Biases/Thresholds
%
% e (m(k),r) Errors
%
% layer (k,r) Information about a desired layer j
% .x(m(j-1),1) Inputs to layer j
% .y(m(j),1) Outputs of layer j
% .dYT(m(j),1) Derivative of layer j

153

CHAPTER 9 NEURAL NETS

% .w(m(j),m(j-1) Weights of layer j
% .w0(m(j)) Thresholds of layer j
%
%---
% (:) Means that the dimension is undefined.
% (n) = number of inputs to neural net
% (r) = number of runs (ie. sets of inputs)
% (k) = number of layers
% (m(j)) = number of nodes in j-th layer
%---
%% Reference: Nilsson, Nils J. (1998.) Artificial Intelligence:
% A New Synthesis. Morgan Kaufmann Publishers. Ch. 3.

% Input Processing
%-----------------
if(˜isfield(layer,'w'))

error('Must input size of neural net.');
end;

if(˜isfield(layer,'w0'))
layer(1).w0 = [];

end;

if(˜isfield(layer,'type'))
layer(1).type = [];

end;

if(˜isfield(layer,'alpha'))
layer(1).type = [];

end;

% Generate some useful sizes
%---------------------------
nLayers = size(layer,1);
nInputs = size(x,1);
nRuns = size(x,2);

if(size(y,2) ˜= nRuns)
error('The number of input and output columns must be equal.')

end;

for j = 1:nLayers
if(isempty(layer(j,1).w))

error('Must input weights for all layers')
end;
if(isempty(layer(j,1).w0))

layer(j,1).w0 = zeros(size(layer(j,1).w,1), 1);
end;

end;

nOutputs = size(layer(nLayers,1).w, 1);

154

CHAPTER 9 NEURAL NETS

% If there are multiple layers and only one type
% replicate it (the first layer type is the default)
%---
if(isempty(layer(1,1).type))

layer(1,1).type = 'tanh';
end;

if(isempty(layer(1,1).alpha))
layer(1,1).alpha = 0.5;

end;

for j = 2:nLayers
if(isempty(layer(j,1).type))

layer(j,1).type = layer(1,1).type;
end;
if(isempty(layer(j,1).alpha))

layer(j,1).alpha = layer(1,1).alpha;
end;

end;

% Set up additional storage
%--------------------------
h = waitbar(0,'Allocating Memory');

y0 = zeros(nOutputs,nRuns);
dY = zeros(nOutputs,nRuns);

for k = 1:nLayers
[outputs,inputs] = size(layer(k,1).w);
temp.layer(k,1).w = layer(k,1).w;
temp.layer(k,1).w0 = layer(k,1).w0;
temp.layer(k,1).type = layer(k,1).type;

for j = 1:nRuns
layer(k,j).w = zeros(outputs,inputs);
layer(k,j).w0 = zeros(outputs,1);
layer(k,j).x = zeros(inputs,1);
layer(k,j).y = zeros(outputs,1);
layer(k,j).dY = zeros(outputs,1);
layer(k,j).delta = zeros(outputs,1);

waitbar(((k-1)*nRuns+j) / (nLayers*nRuns));
end;

end;

close(h);

% Perform back propagation
%-------------------------
h = waitbar(0, 'Neural Net Training in Progress');
for j = 1:nRuns

155

CHAPTER 9 NEURAL NETS

% Work backward from the output layer
%------------------------------------
[yN, dYN,layerT] = NeuralNetMLFF(x(:,j), temp);
e(:,j) = y(:,j) - yN(:,1);

for k = 1:nLayers
layer(k,j).w = temp.layer(k,1).w;
layer(k,j).w0 = temp.layer(k,1).w0;
layer(k,j).x = layerT(k,1).x;
layer(k,j).y = layerT(k,1).y;
layer(k,j).dY = layerT(k,1).dY;

end;

layer(nLayers,j).delta = e(:,j).*dYN(:,1);

for k = (nLayers-1):-1:1
layer(k,j).delta = layer(k,j).dY.*(temp.layer(k+1,1).w'*layer(k+1,j).

delta);
end

for k = 1:nLayers
temp.layer(k,1).w = temp.layer(k,1).w + layer(k,1).alpha*layer(k,j).

delta*layer(k,j).x';
temp.layer(k,1).w0 = temp.layer(k,1).w0 - layer(k,1).alpha*layer(k,j).

delta;
end;

waitbar(j/nRuns);

end
w = temp.layer;

close(h);

% Output processing
%------------------
if(nargout == 0)

PlotSet(1:size(e,2), e, 'Step', 'Error', 'Neural Net Training');
end

9.3 Train a Network with One Output Node
9.3.1 Problem
We want to train the neural network to classify numbers. A good first step is identifying a single number.
In this case, we will have a single output node, and our training data will include our desired digit,
starting with 0, plus a few other digits.

156

CHAPTER 9 NEURAL NETS

9.3.2 Solution
We can create this neural network with our GUI, shown in Figure 9.3. We can try training the net with the
output node having different types, such as sign and logistic. In our case, we start with a sigmoid
function for the hidden layer and a step function for the output node.

Figure 9.3: A neural net with 256 inputs, one per pixel, an intermediate layer with 30 nodes, and one
output.

157

CHAPTER 9 NEURAL NETS

Figure 9.4: The Neural Net Training GUI.

Our GUI has a separate training window, Figure 9.4. It has buttons for loading and saving training
sets, training, and testing the trained neural net. It will plot results automatically based on preferences
selected.

9.3.3 How It Works
Then we build the network with 256 inputs, 1 for each pixel; 30 nodes in 1 hidden layer; and 1 output
node. We load the training data from the first recipe into the Trainer GUI, and we must select the number
of training runs. Two thousand runs should be sufficient if our neuron functions are selected properly.
We have an additional parameter to select, the learning rate for the backpropagation; it is reasonable to
start with a value of 1.0. Note that our training data script assigned 75% of the images for training and

158

CHAPTER 9 NEURAL NETS

Figure 9.5: Layer 2 node weights and biases evolution.

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Run

-1.5

-1

-0.5

0

0.5

1

1.5

1

Node Weights for Layer 2

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Run

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

1

Node Biases for Layer 2

Figure 9.6: Single-digit training error and RMS error.

1

RM
S

Er
ro

r

Training Error
1 10 0

RMS Training Error

0.8

0.6

0.4 10 -1

0.2

0

-0.2 10 -2

-0.4

-0.6

-0.8
0 200 400 600 800 1000 1200 1400 1600 1800 2000

Run

10 -3

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Run

reserved the remainder for testing, using randperm to extract a random set of images. The training
records the weights and biases for each run and generates plots on completion. We can easily plot these
for the output node, which has just 30 nodes and 1 bias. See Figure 9.5.

The training function also outputs the training error as the net evolves and the root-mean-square
(RMS) of the error.

Since we have a large number of input neurons, a line plot is not very useful for visualizing the
evolution of the weights for the hidden later. However, we can view the weights at any given iteration
as an image. Figure 9.7 shows the weights for the network with 30 nodes after training visualized using
imagesc. We may wonder if we really need all 30 nodes in the hidden layer, or if we could extract
the necessary number of features identifying our chosen digit with fewer. In the image on the right, the
weights are shown sorted along the dimension of the input pixels for each node; we can clearly see that
only a few nodes seem to have much variation from the random values they are initialized with. That is,
many of our nodes seem to be having no impact.

159

CHAPTER 9 NEURAL NETS

Figure 9.7: Single-digit network, 30-node hidden layer weights. The image on the left shows the weight
value. The image on the rights shows the weights sorted by pixel for each node.

Since this visualization seems helpful, we add the code to the training GUI after the generation of the
weights line plots. We create two images in one figure, the initial value of the weights on the left and the
training values on the right. The HSV colormap looks more striking here than the default Parula map.
The code that generates the images in NeuralNetTrainer looks like this:

% New figure: weights as image
newH = figure('name',['Node Weights for Layer ' num2str(j)]);
endWeights = [h.train.network(j,1).w(:);h.train.network(j,end).w(:)];
minW = min(endWeights);
maxW = max(endWeights);
subplot(1,2,1)
imagesc(h.train.network(j,1).w,[minW maxW])
colorbar
ylabel('Output Node')
xlabel('Input Node')
title('Weights Before Training')
subplot(1,2,2)
imagesc(h.train.network(j,end).w,[minW maxW])
colorbar
xlabel('Input Node')
title('Weights After Training')

colormap hsv
h.resultsFig = [newH; h.resultsFig];

Note that we compute the minimum and maximum weight values among both the initial and final
iterations, for scaling the two colormaps the same. Now, since many of our 30 initial nodes seemed
unneeded, we reduce the number of nodes in that layer to 10, reinitialize the weights (randomly), and
train again. Now we get our new figure with the weights displayed as an image bot before and after the
training, Figure 9.8.

Now we can see more patches of colors that have diverged from the initial random weights in the
images for the 256 pixel weights, and we see clear variation in the weights for the second layer as well.

160

CHAPTER 9 NEURAL NETS

Figure 9.8: Single-digit network, 10-node hidden layer weights before and after training. The first figure
shows the images for the first layer, and the second for the second layer, which has just one output.

9.4 Testing the Neural Network
9.4.1 Problem
We want to test the neural net.

9.4.2 Solution
We can test the network with inputs that were not used in training. This is explicitly allowed in the GUI
as it has separate indices for the training data and testing data. We selected 150 of our sample images for
training and saved the remaining 50 for testing in our DigitTrainingData script.

9.4.3 How It Works
In the case of our GUI, simply click the test button to run the neural network with each of the cases
selected for training.

Figure 9.9 shows the results for a network with the output node using the sigmoid magnitude function
and another case with the output node using a step function; that is, the output is limited to 0 or 1.

The GUI allows you to save the trained net for future use.

161

CHAPTER 9 NEURAL NETS

Figure 9.9: Neural net results with sigmoid (left) and step (right) activation functions.

Princeton Satellite Systems

Neural Net

0 20 40 60 80 100 120
Step

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Ou
tp

ut
s

0 10 20 30 40 50 60
Test Input Set

0

0.2

0.4

0.6

0.8

1

1

Net with Step Output

9.5 Train a Network with Multiple Output Nodes
9.5.1 Problem
We want to build a neural net that can detect all 10 digits separately.

9.5.2 Solution
Add nodes so that the output layer has 10 nodes, each of which will be 0 or 1 when the representative
digit (0–9) is input. Try the output nodes with different functions, like logistic and step. Now that we
have more digits, we will go back to having 30 nodes in the hidden layer.

9.5.3 How It Works
Our training data now consist of all 10 digits, with a binary output of zeros with a 1 in the correct slot.
For example, a 1 will be represented as

[0 1 0 0 0 0 0 0 0]

We follow the same procedure for training. We initialize the net, load the training set into the GUI,
and specify the number of training runs for the backpropagation.

The training data, in Figure 9.11, shows that much of the learning is achieved in the first 3000 runs.
The test data, in Figure 9.12, show that each set of digits (in sets of 20 in this case, for 200 total tests)

is correctly identified.
Once you have saved a net that is working well to a MAT-file, you can call it with new data using the

function NeuralNetMLFF.

162

CHAPTER 9 NEURAL NETS

>> data = load('NeuralNetMat');
>> network = data.DigitsStepNet;
>> y = NeuralNetMLFF(DigitTrainingTS.inputs(:,1), data.DigitsStepNet)
y =

1
0
0
0
0
0
0
0
0
0

Figure 9.10: Net with multiple outputs.

163

CHAPTER 9 NEURAL NETS

Figure 9.11: Training RMS for multiple-digit neural net.
RM

S
Er

ro
r

10 1

10 0

10 -1

10 -2

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Run

164

CHAPTER 9 NEURAL NETS

Figure 9.12: Test results for multiple-digit neural net.

0 20 40 60 80 100 120 140 160 180 200
Test Input Set

0
0.5

1

 1

Test Output

0 20 40 60 80 100 120 140 160 180 200
Test Input Set

0
0.5

1

 2

0 20 40 60 80 100 120 140 160 180 200
Test Input Set

0
0.5

1

 3

0 20 40 60 80 100 120 140 160 180 200
Test Input Set

0
0.5

1

 4

0 20 40 60 80 100 120 140 160 180 200
Test Input Set

0
0.5

1

 5

0 20 40 60 80 100 120 140 160 180 200
Test Input Set

0
0.5

1

 6

0 20 40 60 80 100 120 140 160 180 200
Test Input Set

0
0.5

1

 7

0 20 40 60 80 100 120 140 160 180 200
Test Input Set

0
0.5

1

 8

0 20 40 60 80 100 120 140 160 180 200
Test Input Set

0
0.5

1

 9

0 20 40 60 80 100 120 140 160 180 200
Test Input Set

0
0.5

1

10

Again, it is fun to play with visualization of the neural net weights, to gain insight into the problem,
and our problem is small enough that we can do so with images. We can view a single set of 256 weights
for one hidden neuron as a 16 x 16 image, and view the whole set with each neuron its own row as before
(Figure 9.13), to see the patterns emerging.

Figure 9.13:Multiple-digit neural net weights.

165

CHAPTER 9 NEURAL NETS

You can see parts of digits as mini-patterns in the individual node weights. Simply use imagesc
with reshape like this:

>> figure;
>> imagesc(reshape(net.DigitsStepNet.layer(1).w(23,:),16,16));
>> title('Weights to Hidden Node 23')

and see images as in Figure 9.14.

Figure 9.14:Multiple-digit neural net weights.

Summary
This chapter has demonstrated neural learning to classify digits. An interesting extension to our tool
would be the use of image datastores, rather than a matrix representation of the input data. The tool
as created can be used for any numeric input data, but once the data become “big,” a more specific
implementation will be called for. Table 9.1 gives the code introduced in the chapter.

Table 9.1: Chapter Code Listing

File Description
DigitTrainingData Create a training set of digit images
CreateDigitImage Create a noisy image of a single digit
Neuron Model an individual neuron with multiple activation functions
NeuralNetMLFF Compute the output of a multilayer feedforward neural net
NeuralNetTraining Training with backpropagation
DrawNeuralNet Display a neural net with multiple layers
SaveTS Save a training set MAT-file with index data

166

CHAPTER 9 NEURAL NETS

References
[1] Nils J. Nilsson. Artificial Intelligence: A New Synthesis. Morgan Kaufmann Publishers, 1998.
[2] S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach, Third Edition. Prentice-Hall,

2010.

167

CHAPTER 10

Kalman Filters

Understanding or controlling a physical system often requires a model of the system, that is, knowledge
of the characteristics and structure of the system. A model can be a predefined structure or can be de-
termined solely through data. In the case of Kalman filtering, we create a model and use the model as a
framework for learning about the system.

What is important about Kalman filters is that they rigorously account for uncertainty in a system
that you want to know more about. There is uncertainty in the model of the system, if you have a model,
and uncertainty (i.e., noise) in measurements of a system.

A system can be defined by its dynamical states and its parameters, which are nominally constant. For
example, if you are studying an object sliding on a table, the states would be the position and velocity.
The parameters would be the mass of the object and the friction coefficient. There might also be an
external force on the object that we might want to estimate. The parameters and states compose the
model. You need to know both to properly understand the system. Sometimes it is hard to decide if
something should be a state of a parameter. Mass is usually a parameter, but in a plane, car, or rocket
where the mass changes as fuel is consumed, it is often modeled as a state.

Kalman filters, invented by R. E. Kalman and others, are a mathematical framework for estimating
or learning the states of a system. An estimator gives you statistically best estimates of the position and
velocity. Kalman filters can also be written to identify the parameters of a system. Thus, the Kalman
filter provides a framework for both state and parameter identification.

This field is also known as system identification. System identification is the process of identifying
the structure and parameters of any system. For example, with a simple mass on a spring it would be
the identification or determination of the mass and spring constant values along with determining the
differential equation for modeling the system. It is a form of machine learning that has its origins in
control theory. There are many methods of system identification. In this chapter we will study only the
Kalman filter. The term “learning” is not usually associated with estimation, but it is really the same
thing.

An important aspect of the system identification problem is determining what parameters and states
can actually be estimated given the measurements that are available. This applies to all learning systems.
The question is can we learn what we need to know about something through our observations? For
this we want to know if a parameter or state is observable and can be independently distinguished. For
example, suppose we are using Newton’s law

F = ma (10.1)

© Michael Paluszek, Stephanie Thomas 2017
M. Paluszek and S. Thomas,MATLAB Machine Learning, DOI 10.1007/978-1-4842-2250-8 10

169

CHAPTER 10 KALMAN FILTERS

where F is force, m is mass, and a is acceleration as our model, and our measurement is acceleration.
Can we estimate both force and mass? The answer is no because we are measuring the ratio of force to
mass

a=
F
m

(10.2)

We can’t separate the two. If we had a force sensor or a mass sensor we could determine each separately.
You need to be aware of this issue in all learning systems including Kalman filters.

10.1 A State Estimator
10.1.1 Problem
You want to estimate the velocity and position of a mass attached through a spring and damper to a
structure. The system is shown in Figure 10.1. m is the mass, k is the spring constant, c is the damping
constant, and F is an external force. x is the position. The mass moves in only one direction.

Figure 10.1: Spring-mass-damper system. The mass is on the right. The spring is on the top to the left of
the mass. The damper is below.

k

m F

c

x

The continuous-time differential equations modeling the system are

dr
dt

= v (10.3)

m
dv
dt

= f − cv− kx (10.4)

This says the change in position r with respect to time t is the velocity v. The change in velocity with
respect to time is an external force, minus the damping constant times velocity, minus the spring constant
times the position. The second equation is just Newton’s law where

F = f − cv− kx (10.5)
dv
dt

= a (10.6)

To simplify the problem we divide both sides of the second equation by mass and get

dr
dt

= v (10.7)

dv
dt

= a−2ζ ωv−ω2x (10.8)

170

CHAPTER 10 KALMAN FILTERS

where

c
m

= 2ζ ω (10.9)

k
m

= ω2 (10.10)

a is the acceleration, f
m , ζ is the damping ratio, and ω is the undamped natural frequency. The undamped

natural frequency is the frequency at which the mass would oscillate if there was no damping. The
damping ratio indicates how fast the system damps and what level of oscillations we observe. With a
damping ratio of 0, the system never damps and the mass oscillates forever. With a damping ratio of 1,
you don’t see any oscillation. This form makes it easier to understand what damping and oscillation to
expect. c and k don’t make this clear.

The following simulation generates damped waveforms.

%% Damping ratio Demo
% Demonstrate an oscillator with different damping ratios.
%% See also
% RungeKutta, RHSOscillator, TimeLabel

%% Initialize
nSim = 1000; % Number of simulation steps
dT = 0.1; % Time step (sec)
d = RHSOscillator; % Get the default data structure
d.a = 0.0; % Disturbance acceleration
d.omega = 0.2; % Oscillator frequency
zeta = [0 0.2 0.7071 1];

%% Simulation
xPlot = zeros(length(zeta),nSim);
s = cell(1,4);

for j = 1:length(zeta)
d.zeta = zeta(j);
x = [0;1]; % Initial state [position;velocity]
s{j} = sprintf('\\zeta = %6.4f',zeta(j));
for k = 1:nSim

% Plot storage
xPlot(j,k) = x(1);

% Propagate (numerically integrate) the state equations
x = RungeKutta(@RHSOscillator, 0, x, dT, d);

end
end

%% Plot the results
[t,tL] = TimeLabel(dT*(0:(nSim-1)));
PlotSet(t,xPlot,'x label',tL,'y label','r','figure title','Damping Ratios','

legend',s,'plot set',{1:4})

The results of the simulation are shown in Figure 10.2. The initial conditions are a zero position and
a velocity of 1. The responses to different levels of damping ratios are seen.

171

CHAPTER 10 KALMAN FILTERS

Figure 10.2: Spring-mass-damper system simulation with different damping ratios.

0 10 20 30 40 50 60 70 80 90 100

Time (sec)

-5

-4

-3

-2

-1

0

1

2

3

4

5

r

 = 0.0000

This is in true state-space form because the derivative of the state vector

x=

[
r
v

]
(10.11)

has nothing multiplying it.
The right-hand side for the state equations (first-order differential equations) is shown in the follow-

ing listing. Notice that if no inputs are requested, it returns the default data structure. The if (nargin
< 1) code tells the function to return the data structure if no inputs are given. This is a convenient way
of helping people to use your functions.

%% RHSOSCILLATOR Right hand side of an oscillator.
%% Form
% xDot = RHSOscillator(˜, x, a)
%
%% Description
% An oscillator models linear or rotational motion plus many other
% systems. It has two states, position and velocity. The equations of
% motion are:
%
% rDot = v
% vDot = a - 2*zeta*omega*v - omegaˆ2*r
%
% This can be called by the MATLAB Recipes RungeKutta function or any MATLAB

172

CHAPTER 10 KALMAN FILTERS

% integrator. Time is not used.
%
% If no inputs are specified it will return the default data structure.
%
%% Inputs
% t (1,1) Time (unused)
% x (2,1) State vector [r;v]
% d (.) Data structure
% .a (1,1) Disturbance acceleration (m/sˆ2)
% .zeta (1,1) Damping ratio
% .omega (1,1) Natural frequency (rad/s)
%
%% Outputs
% x (2,1) State vector derivative d[r;v]/dt
%

function xDot = RHSOscillator(˜, x, d)

if(nargin < 1)
xDot = struct('a',0,'omega',0.1,'zeta',0);
return

end

xDot = [x(2);d.a-2*d.zeta*d.omega*x(2)-d.omegaˆ2*x(1)];

The following listing is the simulation script. It causes the right-hand side to be numerically inte-
grated. We start by getting the default data structure from the right-hand side. We fill it in with our
desired parameters.

%% Initialize
nSim = 1000; % Simulation end time (sec)
dT = 0.1; % Time step (sec)
dRHS = RHSOscillator; % Get the default data structure
dRHS.a = 0.1; % Disturbance acceleration
dRHS.omega = 0.2; % Oscillator frequency
dRHS.zeta = 0.1; % Damping ratio
x = [0;0]; % Initial state [position;velocity]
baseline = 10; % Distance of sensor from start point
yR1Sigma = 1; % 1 sigma position measurement noise
yTheta1Sigma = asin(yR1Sigma/baseline); % 1 sigma angle measurement

noise

%% Simulation
xPlot = zeros(4,nSim);

for k = 1:nSim

% Measurements
yTheta = asin(x(1)/baseline) + yTheta1Sigma*randn(1,1);
yR = x(1) + yR1Sigma*randn(1,1);

% Plot storage
xPlot(:,k) = [x;yTheta;yR];

173

CHAPTER 10 KALMAN FILTERS

% Propagate (numerically integrate) the state equations
x = RungeKutta(@RHSOscillator, 0, x, dT, dRHS);

end

%% Plot the results
yL = {'r (m)' 'v (m/s)' 'y_\theta (rad)' 'y_r (m)'};
[t,tL] = TimeLabel(dT*(0:(nSim-1)));

PlotSet(t, xPlot, 'x label', tL, 'y label', yL,...
'plot title', 'Oscillator', 'figure title', 'Oscillator');

The results of the simulation are shown in Figure 10.3. The input is a disturbance acceleration that
goes from zero to its value at time t = 0. It is constant for the duration of the simulation. This is known
as a step disturbance. This causes the system to oscillate. The magnitude of the oscillation slowly goes
to zero because of the damping. If the damping ratio were 1, we would not see any oscillation.

Figure 10.3: Spring-mass-damper system simulation. The input is a step acceleration. The oscillation
slowly damps out; that is, it goes to zero over time. The position develops an offset because of the
constant acceleration.

0 10 20 30 40 50 60 70 80 90 100

Time (sec)

0

5

r (
m

)

Oscillator

0 10 20 30 40 50 60 70 80 90 100

Time (sec)

-0.5

0

0.5

v
(m

/s
)

0 10 20 30 40 50 60 70 80 90 100

Time (sec)

-1

0

1

y
 (r

ad
)

0 10 20 30 40 50 60 70 80 90 100

Time (sec)

-10

0

10

y r (m
)

174

CHAPTER 10 KALMAN FILTERS

The offset is found analytically by setting v= 0. Essentially, the spring force is balancing the external
force.

0=
dv
dt

= a−ω2x (10.12)

x=
a

ω2 (10.13)

We have now completed the derivation of our model and can move on to building the Kalman filters.

10.1.2 Solution
Kalman filters can be derived from Bayes’ theorem. What is Bayes’ theorem? Bayes’ theorem is

P(Ai|B) =
P(B|Ai)P(Ai)

∑P(B|Ai)
(10.14)

P(Ai|B) =
P(B|Ai)P(Ai)

P(B)
(10.15)

which is just the probability of Ai given B. P means “probability.” The vertical bar | means “given.” This
assumes that the probability of B is not zero; that is, P(B) �= 0. In the Bayesian interpretation, the theorem
introduces the effect of evidence on belief. This provides a rigorous framework for incorporating any data
for which there is a degree of uncertainty. Put simply, given all evidence (or data) to date, Bayes’ theorem
allows you to determine how new evidence affects the belief. In the case of state estimation, this is the
belief in the accuracy of the state estimate.

Figure 10.4 shows the Kalman filter family and how it relates to the Bayesian filter. In this book we
are covering only the ones in the colored boxes. The complete derivation is given below; this provides a

Figure 10.4: The Kalman filter family tree.

Bayesian Filter

Additive
Gaussian

Noise

Non
Gaussian

Noise

Nonlinear Linear Resampling
Particle

Filter

Non-Resampling
Particle
Filter

Gauss-Hermite
Kalman
Filter

Monte-Carlo
Kalman
Filter

Unscented
Kalman
Filter

Extended
Kalman
Filter

Linear
Kalman
Filter

Sequential
Importance Sampling

Particle
Filter

Bootstrap
Particle

Filter

Gaussian
Particle

Filter

Non-daugmented Augmente Gauss-Hermite
Particle
Filter

Unscented
Kalman
Particle

Filter

Monte-Carlo
Kalman
Particle

Filter

175

CHAPTER 10 KALMAN FILTERS

coherent framework for all Kalman filtering implementations. The different filters fall out of the Bayesian
models based on assumptions about the model and sensor noise and the linearity or nonlinearity of the
measurement and dynamics models. All of the filters are Markov; that is, the current dynamical state
is entirely predictable from the previous state. Particle filters are not addressed in this book. They are a
class of Monte Carlo methods. Monte Carlo (named after the famous casino) methods are computational
algorithms that rely on random sampling to obtain results. For example, a Monte Carlo approach to our
oscillator simulation would be to use the MATLAB function nrandn to generate the accelerations. We’d
run many tests to verify that our mass moves as expected.

10.1.3 How It Works

Our derivation will use the notation N(μ ,σ2) to represent a normal, which is another word for Gaussian,
variable, which means it is distributed as the normal distribution with mean μ (average) and variance
σ2. The following code computes a Gaussian or Normal distribution around a mean of 2 for a range
of standard deviations. Figure 10.5 shows a plot. The height of the plot indicates how likely a given
measurement of the variable is to have that value.

%% Initialize
mu = 2; % Mean
sigma = [1 2 3 4]; % Standard deviation
n = length(sigma);
x = linspace(-7,10);

%% Simulation
xPlot = zeros(n,length(x));
s = cell(1,n);

for k = 1:length(sigma)
s{k} = sprintf('Sigma = %3.1f',sigma(k));
f = -(x-mu).ˆ2/(2*sigma(k)ˆ2);
xPlot(k,:) = exp(f)/sqrt(2*pi*sigma(k)ˆ2);

end

%% Plot the results
h = figure;
set(h,'Name','Gaussian');
plot(x,xPlot)
grid
xlabel('x');
ylabel('Gaussian');
grid on
legend(s)

176

CHAPTER 10 KALMAN FILTERS

Figure 10.5: Normal or Gaussian random variable about a mean of 2.

-8 -6 -4 -2 0 2 4 6 8 10

x

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
Ga

us
si

an

Sigma = 1.0

Given the probabilistic state-space model in discrete time [1]

xk = fk(xk−1,wk−1) (10.16)

where x is the state vector and w is the noise vector, the measurement equation is

yk = hk(xk,vn) (10.17)

where vn is the measurement noise. This has the form of a hidden Markov model (HMM) because the
state is hidden.

If the process is Markovian, that is, the future xk is dependent only on the current state and is not
dependent on the past states (the present is xk−1), then

p(xk|x1:k−1,y1:k−1) = p(xk|xk−1) (10.18)

The | means given. In this case, the first term is read as “the probability of xk given x1:k−1 and y1:k−1.”
This is the probability of the current state given all past states and all measurements up to the k− 1
measurement. The past, xk−1, is independent of the future given the present (which is xk):

p(xk−1|xk:T ,yk:T) = p(xk−1|xk) (10.19)

where T is the last sample and the measurements yk are conditionally independent given xk:

p(yk|x1:k,y1:k−1) = p(yk|xk) (10.20)

177

CHAPTER 10 KALMAN FILTERS

We can define the recursive Bayesian optimal filter that computes the distribution:

p(xk|y1:k) (10.21)

given

• the prior distribution p(x0), where x0 is the state prior to the first measurement,

• the state-space model

xk ∼ p(xk|xk−1) (10.22)

yk ∼ p(yk|xk) (10.23)

• the measurement sequence y1:k = y1, . . . ,yk.

Computation is based on the recursion rule

p(xk−1|y1:k−1)→ p(xk|y1:k) (10.24)

This means we get the current state from the prior state and all the past measurements. Assume we know
the posterior distribution of the previous time step

p(xk−1|y1:k−1) (10.25)

The joint distribution of xk,xk−1 given y1:k−1 can be computed as

p(xk,xk−1|y1:k−1) = p(xk|xk−1,y1:k−1)p(xk−1|y1:k−1) (10.26)

= p(xk|xk−1)p(xk−1|y1:k−1) (10.27)

because this is a Markov process. Integrating over xk−1 gives the prediction step of the optimal filter,
which is the Chapman–Kolmogorov equation

p(xk|y1:k−1) =
∫

p(xk|xk−1,y1:k−1)p(xk−1|y1:k−1)dxk−1 (10.28)

The Chapman–Kolmogorov equation is an identity relating the joint probability distributions of different
sets of coordinates on a stochastic process. The measurement update state is found from Bayes’ rule

P(xk|y1:k) =
1
Ck

p(yk|xk)p(xk|yk−1) (10.29)

Ck = p(yk|y1:k−1) =
∫

p(yk|xk)p(xk|y1:k−1)dxk (10.30)

Ck is the probability of the current measurement, given all past measurements.
If the noise is additive and Gaussian with the state covariance Qn and the measurement covariance

Rn, the model and measurement noise have zero mean, we can write the state equation as

xk = fk(xk−1)+wk−1 (10.31)

where x is the state vector and w is the noise vector. The measurement equation becomes

yk = hk(xk)+ vn (10.32)

178

CHAPTER 10 KALMAN FILTERS

Given that Q is not time dependent, we can write

p(xk|xk−1,y1:k−1) = N(xk; f (xk−1),Q) (10.33)

We can now write the prediction step, Eq. 10.28, as

p(xk|y1:k−1) =
∫

N(xk; f (xk−1),Q)p(xk−1|y1:k−1)dxk−1 (10.34)

We need to find the first two moments of xk. A moment is the expected value (or mean) of the variable.
The first moment is of the variable, the second is of the variable squared, and so forth. They are

E[xk] =
∫

xk p(xk|y1:k−1)dxk (10.35)

E[xkx
T
k] =

∫
xkx

T
k p(xk|y1:k−1)dxk (10.36)

E means expected value. E[xk] is the mean and E[xkxTk] is the covariance. Expanding the first moment
and using the identity E[x] =

∫
xN(x; f (s),Σ)dx= f (s) where s is any argument gives

E[xk] =
∫

xk

[∫
N(xk; f (xk−1),Q)p(xk−1|y1:k−1)dxk−1

]
dxk (10.37)

=
∫

xk

[∫
N(xk; f (xk−1),Q)dxk

]
p(xk−1|y1:k−1)dxk−1 (10.38)

=
∫

f (xk−1)p(xk−1|y1:k−1)dxk−1 (10.39)

Assuming that p(xk−1|y1:k−1) = N(xk−1; x̂k−1|k−1,P
xx
k−1|k−1) where P

xx is the covariance of x and noting
that xk = fk(xk−1)+wk−1, we get

x̂k|k−1 =
∫

f (xk−1)N(xk−1; x̂k−1|k−1,P
xx
k−1|k−1)dxk−1 (10.40)

For the second moment we have

E[xkx
T
k] =

∫
xkx

T
k p(xk|y1:k−1)dxk (10.41)

=
∫ [∫

(xk; f (xk−1),Q)xkx
T
k dxk

]
p(xk−1|y1:k−1)dxk−1 (10.42)

which results in

Pxx
k|k−1 = Q+

∫
f (xk−1) f

T (xk−1)N(xk−1; x̂k−1|k−1,P
xx
k−1|k−1)dxk−1− x̂Tk|k−1x̂k|k−1 (10.43)

The covariance for the initial state is Gaussian and is Pxx
0 . The Kalman filter can be written without

further approximations as

x̂k|k = x̂k|k−1+Kn
[
yk− ŷk|k−1

]
(10.44)

Pxx
k|k = Pxx

k|k−1−KnP
yy
k|k−1K

T
n (10.45)

Kn = Pxy
k|k−1

[
Pyy
k|k−1

]−1
(10.46)

179

CHAPTER 10 KALMAN FILTERS

where Kn is the Kalman gain and Pyy is the measurement covariance. The solution of these equations
requires the solution of five integrals of the form

I =
∫

g(x)N(x; x̂,Pxx)dx (10.47)

The three integrals needed by the filter are

Pyy
k|k−1 = R+

∫
h(xn)h

T (xn)N(xn; x̂k|k−1,P
xx
k|k−1)dxk− x̂Tk|k−1ŷk|k−1 (10.48)

Pxy
k|k−1 =

∫
xnh

T (xn)N(xn; x̂k|k−1,P
xx
k|k−1)dx (10.49)

ŷk|k−1 =
∫

h(xk)N(xk; x̂k|k−1,P
xx
k|k−1)dxk (10.50)

10.1.4 Conventional Kalman Filter
Assume we have a model of the form

xk = Ak−1xk−1+Bk−1uk−1+qk−1 (10.51)

yk = Hkxk+ rk (10.52)

where

• xk ∈ ℜn is the state of system at time k.

• Ak−1 is the state transition matrix at time k−1.

• Bk−1 is the input matrix at time k−1.

• qk−1N(0,Qk) is the process noise at time k−1.

• yk ∈ ℜm is the measurement at time k.

• Hk is the measurement matrix at time k. This is found from the Jacobian of h(x).

• rkN(0,Rk) is the measurement noise at time k.

• The prior distribution of the state is x0 = N(m0,P0), where parameters m0 and P0 contain all prior
knowledge about the system. m0 is the mean at time zero and P0 is the covariance. Since our state
is Gaussian, this completely describes the state.

ℜn means real numbers in a vector of order n; that is, the state has n quantities. In probabilistic terms the
model is

p(xk|xk−1) = N(xk;Ak−1xk−1,Qk) (10.53)

p(yk|xk) = N(yk;Hkxk,Rk) (10.54)

The integrals become simple matrix equations. In these equations P−
k means the covariance prior to the

measurement update.

Pyy
k|k−1 = HkP

−
k HT

k +Rk (10.55)

Pxy
k|k−1 = P−

k HT
k (10.56)

Pxx
k|k−1 = Ak−1Pk−1A

T
k−1+Qk−1 (10.57)

x̂k|k−1 = m−
k (10.58)

ŷk|k−1 = Hkm
−
k (10.59)

180

CHAPTER 10 KALMAN FILTERS

The prediction step becomes

m−
k = Ak−1mk−1 (10.60)

P−
k = Ak−1Pk−1A

T
k−1+Qk−1 (10.61)

The first term in the above covariance equation propagates the covariance based on the state transition
matrix, A. Qk+1 adds to this to form the next covariance. Process noise Qk+1 is a measure of the accuracy
of the mathematical model, A, in representing the system. For example, suppose A was a mathematical
model that damped all states to zero. Without Q, P would go to zero. But if we really weren’t that certain
about the model, the covariance would never be less than Q. Picking Q can be difficult. In a dynamical
system with uncertain disturbances you can compute the standard deviation of the disturbances to com-
pute Q. If the model A is uncertain, then you might do a statistical analysis of the range of models. Or
you can try different Q in simulation and see which ones work the best!

The update step is

vk = yk−Hkm
−
k (10.62)

Sk = HkP
−
k HT

k +Rk (10.63)

Kk = P−
k HT

k S
−1
k (10.64)

mk = m−
k +Kkvk (10.65)

Pk = P−
k −KkSkK

T
k (10.66)

Sk is an intermediate quantity. vk is the residual. The residual is the difference between the measurement
and your estimate of the measurement given the estimated states. R is just the covariance matrix of the
measurements. If the noise is not white, a different filter should be used. White noise has equal energy
at all frequencies. Many types of noise, such as the noise from an imager, is not really white noise but
are band limited; that is, it has noise in a limited range of frequencies. You can sometimes add additional
states to A to model the noise better, for example, adding a low-pass filter to band limit the noise. This
makes A bigger but is generally not an issue.

We will investigate the application of the Kalman filter to the oscillator. First we need a method of
converting the continuous-time problem to discrete time. We only need to know the states at discrete
times or at fixed intervals, T . We use the continuous to discrete transform that uses the MATLAB expm
function shown in the following function.

function [f, g] = CToDZOH(a, b, T)

if(nargin < 1)
Demo;
return

end

[n,m] = size(b);
q = expm([a*T b*T;zeros(m,n+m)]);
f = q(1:n,1:n);
g = q(1:n,n+1:n+m);

%% Demo
function Demo

T = 0.5;

181

CHAPTER 10 KALMAN FILTERS

fprintf(1,'Double integrator with a %4.1f second time step.\n',T);
a = [0 1;0 0]
b = [0;1]
[f, g] = CToDZOH(a, b, T);
f
g

If you run the demo, for a double integrator, you get the following results. A double integrator is

d2x
dt2

= a (10.67)

Written in state-space form, it is

dr
dt

= v (10.68)

dv
dt

= a (10.69)

or in matrix form
ẋ= Ax+Bu (10.70)

where

x =

[
r
v

]
(10.71)

u =

[
0
a

]
(10.72)

A =

[
0 1
0 0

]
(10.73)

B =

[
0
1

]
(10.74)

>> CToDZOH
Double integrator with a 0.5-s time step.
a =

0 1
0 0

b =
0
1

f =
1.0000 0.5000

0 1.0000
g =

0.1250
0.5000

The discrete plant matrix f is easy to understand. The position state at step k+1 is the state at k plus
the velocity at step k multiplied by the time step T of 0.5 s. The velocity at step k+ 1 is the velocity at

182

CHAPTER 10 KALMAN FILTERS

k plus the time step times the acceleration at step k. The acceleration at the time k multiplies 1
2T

2 to get
the contribution to position. This is just the standard solution to a particle under a constant acceleration.

rk+1 = rk+Tvk+
1
2
T 2ak (10.75)

vk+1 = vk+Tak (10.76)

In matrix form this is
xk+1 = f xk+buk (10.77)

With the discrete-time approximation we can change the acceleration every step k to get the time history.
This assumes that the acceleration is constant over the period T . We need to pick T so that this is
approximately true if we are to get good results.

The script for testing the Kalman filter, KFSim.m, is shown below. KFInitialize is used to
initialize the filter (a Kalman filter, ’kf’, in this case).

%% KFINITIALIZE Kalman Filter initialization

%% Form:
% d = KFInitialize(type, varargin)
%
%% Description

% Initializes Kalman Filter data structures for the KF, UKF, EKF and
% UKFP, parameter update..
%
% Enter parameter pairs after the type.
%
% If you return with only one input it will return the default data
% structure for the filter specified by type. Defaults are returned
% for any parameter you do not enter.
%
%
%% Inputs
% type (1,1) Type of filter 'ukf', 'kf', 'ekf'
% varargin {:} Parameter pairs
%
%% Outputs
% d (1,1) Data structure
%

function d = KFInitialize(type, varargin)

% Default data structures
switch lower(type)

case 'ukf'
d = struct('m',[],'alpha',1, 'kappa',0,'beta',2, 'dT',0,...

'p',[],'q',[],'f','','fData',[], 'hData',[],'hFun','','t',0)
;

case 'kf'
d = struct('m',[],'a',[],'b',[],'u',[],'h',[],'p',[],...

183

CHAPTER 10 KALMAN FILTERS

'q',[],'r',[], 'y',[]);

case 'ekf'
d = struct('m',[],'x',[],'a',[],'b',[],'u',[],'h',[],'hX',[],'hData'

,[],'fX',[],'p',[],...
'q',[],'r',[],'t',0, 'y',[],'v',[],'s',[],'k',[]);

case 'ukfp'
d = struct('m',[],'alpha',1, 'kappa',0,'beta',2, 'dT',0,...

'p',[],'q',[],'f','','fData',[], 'hData',[],'hFun','','t',0,
'eta',[]);

otherwise
error([type ' is not available']);

end

% Return the defaults
if(nargin == 1)

return
end

% Cycle through all the parameter pairs
for k = 1:2:length(varargin)

switch lower(varargin{k})
case 'a'

d.a = varargin{k+1};

case {'m' 'x'}
d.m = varargin{k+1};
d.x = varargin{k+1};

case 'b'
d.b = varargin{k+1};

case 'u'
d.u = varargin{k+1};

case 'hx'
d.hX = varargin{k+1};

case 'fx'
d.fX = varargin{k+1};

case 'h'
d.h = varargin{k+1};

case 'hdata'
d.hData = varargin{k+1};

case 'hfun'
d.hFun = varargin{k+1};

184

CHAPTER 10 KALMAN FILTERS

case 'p'
d.p = varargin{k+1};

case 'q'
d.q = varargin{k+1};

case 'r'
d.r = varargin{k+1};

case 'f'
d.f = varargin{k+1};

case 'eta'
d.eta = varargin{k+1};

case 'alpha'
d.alpha = varargin{k+1};

case 'kappa'
d.kappa = varargin{k+1};

case 'beta'
d.beta = varargin{k+1};

case 'dt'
d.dT = varargin{k+1};

case 't'
d.t = varargin{k+1};

case 'fdata'
d.fData = varargin{k+1};

case 'nits'
d.nIts = varargin{k+1};

case 'kmeas'
d.kMeas = varargin{k+1};

end
end

You set up the Kalman filter by first converting the continuous-time model into discrete time. You
add KFPredict and KFUpdate to the simulation loop. Be careful to put the predict and update steps
in the right places so that the estimator is synchronized with simulation time. The simulation starts by
assigning values to all of the variables used in the simulation. We get the data structure from the function
RHSOscillator and then modify its values. We write the continuous-time model in matrix form and
then convert it to discrete time. randn is used to add Gaussian noise to the simulation. The rest is the
simulation loop with plotting afterward.

185

CHAPTER 10 KALMAN FILTERS

%% KFSim
% Demonstrate a Kalman Filter.
%% See also
% RungeKutta, RHSOscillator, TimeLabel, KFInitialize, KFUpdate, KFPredict

%% Initialize
tEnd = 100.0; % Simulation end time (sec)
dT = 0.1; % Time step (sec)
d = RHSOscillator; % Get the default data structure
d.a = 0.1; % Disturbance acceleration
d.omega = 0.2; % Oscillator frequency
d.zeta = 0.1; % Damping ratio
x = [0;0]; % Initial state [position;velocity]
y1Sigma = 1; % 1 sigma position measurement noise

% xdot = a*x + b*u
a = [0 1;-2*d.zeta*d.omega -d.omegaˆ2]; % Continuous time model
b = [0;1]; % Continuous time input matrix

% x[k+1] = f*x[k] + g*u[k]
[f,g] = CToDZOH(a,b,dT); % Discrete time model
xE = [0.3; 0.1]; % Estimated initial state
q = [1e-6 1e-6]; % Model noise covariance ;

% [1e-4 1e-4] is for low model noise test
dKF = KFInitialize('kf','m',xE,'a',f,'b',g,'h',[1 0],...

'r',y1Sigmaˆ2,'q',diag(q),'p',diag(xE.ˆ2));

%% Simulation
nSim = floor(tEnd/dT) + 1;
xPlot = zeros(5,nSim);

for k = 1:nSim

% Measurements
y = x(1) + y1Sigma*randn(1,1);

% Update the Kalman Filter
dKF.y = y;
dKF = KFUpdate(dKF);

% Plot storage
xPlot(:,k) = [x;y;dKF.m-x];

% Propagate (numerically integrate) the state equations
x = RungeKutta(@RHSOscillator, 0, x, dT, d);

% Propagate the Kalman Filter
dKF.u = d.a;

dKF = KFPredict(dKF);

end

186

CHAPTER 10 KALMAN FILTERS

%% Plot the results
yL = {'r (m)' 'v (m/s)' 'y (m)' '\Delta r_E (m)' '\Delta v_E (m/s)' };
[t,tL] = TimeLabel(dT*(0:(nSim-1)));

PlotSet(t, xPlot, 'x label', tL, 'y label', yL,...
'plot title', 'Oscillator', 'figure title', 'KF Demo');

The prediction Kalman filter step is shown in the following listing. The prediction propagates the
state one time step and propagates the covariance matrix with it. It is saying that when we propagate the
state there is uncertainty so we must add that to the covariance matrix.

function d = KFPredict(d)

% The first path is if there is no input matrix b
if(isempty(d.b))

d.m = d.a*d.m;
else

d.m = d.a*d.m + d.b*d.u;
end

d.p = d.a*d.p*d.a' + d.q;

The update Kalman filter step is shown in the following listing. This adds the measurements to the
estimate and accounts for the uncertainty (noise) in the measurements.

function d = KFUpdate(d)

s = d.h*d.p*d.h' + d.r; % Intermediate value
k = d.p*d.h'/s; % Kalman gain
v = d.y - d.h*d.m; % Residual
d.m = d.m + k*v; % Mean update
d.p = d.p - k*s*k'; % Covariance update

You will note that the “memory” of the filter is stored in the data structure. No persistent data storage is
used. This makes it easier to use these functions in multiple places in your code. Note also that you don’t
have to call KFUpdate every time step. You need only call it when you have new data. However, the
filter does assume uniform time steps.

The script gives two examples for the model noise covariance matrix. Figure 10.6 shows results when
high numbers, [1e-4 1e-4], for the model covariance are used. Figure 10.7 when lower numbers,
[1e-6 1e-6], are used. We don’t change the measurement covariance because only the ratio between
noise covariance and model covariance is important.

When the higher numbers are used, the errors are Gaussian but noisy. When the low numbers are
used, the result is very smooth, with little noise seen. However, the errors are large in the low model
covariance case. This is because the filter is essentially ignoring the measurements since it thinks the
model is very accurate. You should try different options in the script and see how it performs. As you can
see, the parameters make a huge difference in how well the filter learns about the states of the system.

187

CHAPTER 10 KALMAN FILTERS

Figure 10.6: The Kalman filter results with the higher-model-noise matrix, [1e-4 1e-4].

0 10 20 30 40 50 60 70 80 90 100

Time (sec)

0

5

r (
m

)

Oscillator

0 10 20 30 40 50 60 70 80 90 100

Time (sec)

-0.5

0

0.5

v
(m

/s
)

0 10 20 30 40 50 60 70 80 90 100

Time (sec)

-10

0

10

y
(m

)

0 10 20 30 40 50 60 70 80 90 100

Time (sec)

-1

0

1

 r
E
 (m

)

0 10 20 30 40 50 60 70 80 90 100

Time (sec)

-0.1

0

0.1

 v
E
 (m

/s
)

188

CHAPTER 10 KALMAN FILTERS

Figure 10.7: The Kalman filter results with the lower-model-noise matrix, [1e-6 1e-6]. Less noise is
seen but the errors are large.

0 10 20 30 40 50 60 70 80 90 100

Time (sec)

0

5

r (
m

)

Oscillator

0 10 20 30 40 50 60 70 80 90 100

Time (sec)

-0.5

0

0.5

v
(m

/s
)

0 10 20 30 40 50 60 70 80 90 100

Time (sec)

-10

0

10

y
(m

)

0 10 20 30 40 50 60 70 80 90 100

Time (sec)

-0.5

0

0.5

 r
E
 (m

)

0 10 20 30 40 50 60 70 80 90 100

Time (sec)

-0.1

0

0.1

 v
E
 (m

/s
)

The extended Kalman filter was developed to handle models with nonlinear dynamical models and/or
nonlinear measurement models. Given a nonlinear model of the form

xk = f (xk−1,k−1)+qk−1 (10.78)

yk = h(xk,k)+ rk (10.79)

the prediction step is

m−
k = f (mk−1,k−1) (10.80)

P−
k = Fx(mk−1,k−1)Pk−1Fx(mk−1,k−1)T +Qk−1 (10.81)

F is the Jacobian of f . The update step is

vk = yk−h(m−
k ,k) (10.82)

Sk = Hx(m
−
k ,k)P

−
k Hx(m

−
k ,k)

T +Rk (10.83)

Kk = P−
k Hx(m

−
k ,k)

T S−1
k (10.84)

mk = m−
k +Kkvk (10.85)

Pk = P−
k −KkSkK

T
k (10.86)

189

CHAPTER 10 KALMAN FILTERS

Fx(m,k−1) and Hx(m,k) are the Jacobians of the nonlinear functions f and h. The Jacobians are just a
matrix of partial derivatives of F and H. This results in matrices from the vectors F and H. For example,
assume we have f (x,y), which is

f =

[
fx(x,y)
fy(x,y)

]
(10.87)

The Jacobian is

Fk =

[∂ fx(xk,yk)
∂x

∂ fx(xk,yk)
∂y

∂ fy(xk,yk)
∂x

∂ fy(xk,yk)
∂y

]
(10.88)

The matrix is computed at xk,yk.
The Jacobians can be found analytically or numerically. If done numerically, the Jacobian needs to

be computed about the current value of mk. In the iterated extended Kalman filter, the update step is done
in a loop using updated values of mk after the first iteration. Hx(m,k) needs to be updated on each step.

We don’t give an example using the extended Kalman filter but include the code for you to explore.

10.2 Using the Unscented Kalman Filter for State
Estimation

10.2.1 Problem
You want to learn the states of the spring-damper-mass system given a nonlinear angle measurement.

10.2.2 Solution
The solution is to create an unscented Kalman filter (UKF) as a state estimator. This will absorb measure-
ments and determine the state. It will autonomously learn about the state of system based on a preexisting
model.

10.2.3 How It Works
With the UKF we work with the nonlinear dynamical and measurement equations directly. We don’t
have to linearize them. The UKF is also known as a σ point filter because it simultaneously maintains
models one sigma (standard deviation) from the mean.

In the following sections we develop the equations for the nonaugmented Kalman filter. This form
only allows for additive Gaussian noise. This assumes additive Gaussian noise. Given a nonlinear model
of the form

xk = f (xk−1,k−1)+qk−1 (10.89)

yk = h(xk,k)+ rk (10.90)

define weights as

W 0
m =

λ
n+λ

(10.91)

W 0
c =

λ
n+λ

+1−α2+β (10.92)

Wi
m =

λ
2(n+λ)

, i= 1, . . . ,2n (10.93)

Wi
c =

λ
2(n+λ)

, i= 1, . . . ,2n (10.94)

190

CHAPTER 10 KALMAN FILTERS

Note thatWi
m =Wi

c .

λ = α2(n+κ)−n (10.95)

c= λ +n= α2(n+κ) (10.96)

α , β , and κ are scaling constants. General rules for the scaling constants are

• α: 0 for state estimation, 3 minus the number of states for parameter estimation

• β : Determines spread of sigma points. Smaller means more closely spaced sigma points.

• κ: Constant for prior knowledge. Set to 2 for Gaussian processes.

n is the order of the system. The weights can be put into matrix form.

wm =
[
W 0

m · · ·W 2n
m

]T
(10.97)

W = (I− [wm · · ·wm])

⎡
⎢⎣

W 0
c · · · 0
...

. . .
...

0 · · · W 2n
c

⎤
⎥⎦(I− [wm · · ·wm])

T (10.98)

I is the 2n+1 by 2n+1 identity matrix. In the equation vector wm is replicated 2n+1 times.W is 2n+1
by 2n+1. The weights are computed in UKFWeight.

%% UKFWEIGHT Unscented Kalman Filter weight calculation
%% Form:
% d = UKFWeight(d)
%
%% Description
% Unscented Kalman Filter weights.
%
% The weight matrix is used by the matrix form of the Unscented
% Transform. Both UKSPredict and UKSUpdate use the data structure
% generated by this function.
%
% The constant alpha determines the spread of the sigma points around x
% and is usually set to between 10e-4 and 1. beta incorporates prior
% knowledge of the distribution of x and is 2 for a Gaussian
% distribution. kappa is set to 0 for state estimation and 3 - number of
% states for parameter estimation.
% d = UKFWeight(d)
%% Inputs
% d (1,1) Data structure with constants
% .kappa (1,1) 0 for state estimation, 3-#states for
% parameter estimation
% .m (:,1) Vector of mean states
% .alpha (1,1) Determines spread of sigma points
% .beta (1,1) Prior knowledge - 2 for Gaussian
%
%% Outputs
% d (1,1) Data structure with constants
% .w (2*n+1,2*n+1) Weight matrix

191

CHAPTER 10 KALMAN FILTERS

% .wM (1,2*n+1) Weight array
% .wC (2*n+1,1) Weight array
% .c (1,1) Scaling constant
% .lambda (1,1) Scaling constant
%

function d = UKFWeight(d)

% Compute the fundamental constants
n = length(d.m);
a2 = d.alphaˆ2;
d.lambda = a2*(n + d.kappa) - n;
nL = n + d.lambda;
wMP = 0.5*ones(1,2*n)/nL;
d.wM = [d.lambda/nL wMP]';
d.wC = [d.lambda/nL+(1-a2+d.beta) wMP];

d.c = sqrt(nL);

% Build the matrix
f = eye(2*n+1) - repmat(d.wM,1,2*n+1);
d.w = f*diag(d.wC)*f';

The prediction step is

Xk−1 =
[
mk−1 · · · mk−1

]
+
√
c
[
0

√
Pk−1 −√

Pk−1
]

(10.99)

X̂k = f (Xk−1,k−1) (10.100)

m−
k = X̂kwm (10.101)

P−
k = X̂kWX̂T

k +Qk−1 (10.102)

where X is a matrix where each column is the state vector possibly with an added sigma point vector.
The update step is

X−
k =

[
m−
k · · · m−

k

]
+
√
c
[
0

√
P−
k −

√
P−
k

]
(10.103)

Y−
k = h(X−

k ,k) (10.104)

μk = Y−
k wm (10.105)

Sk = Y−
k W [Y−

k]T +Rk (10.106)

Ck = X−
k W [Y−

k]T (10.107)

Kk = CkS
−1
k (10.108)

mk = m−
k +Kk(yk−μk) (10.109)

Pk = P−
k −KkSkK

T
k (10.110)

μk is a matrix of the measurements in which each column is a copy modified by the sigma points. Sk and
Ck are intermediate quantities. The brackets around Y−

k are just for clarity.

192

CHAPTER 10 KALMAN FILTERS

The script for testing the UKF, UKFSim, is shown below. As noted earlier, we don’t need to con-
vert the continuous-time model into discrete time. Instead, we pass the filter the right-hand side of
the differential equations. You must also pass it a measurement model which can be nonlinear. You
add UKFPredict and UKFUpdate to the simulation loop. We start by initializing all parameters.
KFInitialize takes parameter pairs, after ’ukf’ to initialize the filter. The remainder is the simu-
lation loop and plotting.

%% UKFSim
% Demonstrate an Unscented Kalman Filter.
%% See also
% RungeKutta, RHSOscillator, TimeLabel, KFInitialize, UKFUpdate, UKFPredict
% AngleMeasurement

%% Initialize
nSim = 5000; % Simulation steps
dT = 0.1; % Time step (sec)
d = RHSOscillator; % Get the default data structure
d.a = 0.1; % Disturbance acceleration
d.zeta = 0.1; % Damping ratio
x = [0;0]; % Initial state [position;velocity]
y1Sigma = 0.01; % 1 sigma measurement noise
dMeas.baseline = 10; % Distance of sensor from start
xE = [0;0]; % Estimated initial state
q = diag([0.01 0.001]);
p = diag([0.001 0.0001]);
dKF = KFInitialize('ukf','m',xE,'f',@RHSOscillator,'fData',d

,...
'r',y1Sigmaˆ2,'q',q,'p',p,...
'hFun',@AngleMeasurement,'hData',dMeas,'dT',

dT);
dKF = UKFWeight(dKF);

%% Simulation
xPlot = zeros(5,nSim);

for k = 1:nSim

% Measurements
y = AngleMeasurement(x, dMeas) + y1Sigma*randn;

% Update the Kalman Filter
dKF.y = y;
dKF = UKFUpdate(dKF);

% Plot storage
xPlot(:,k) = [x;y;dKF.m-x];

% Propagate (numerically integrate) the state equations
x = RungeKutta(@RHSOscillator, 0, x, dT, d);

% Propagate the Kalman Filter
dKF = UKFPredict(dKF);

end

193

CHAPTER 10 KALMAN FILTERS

%% Plot the results
yL = {'r (m)' 'v (m/s)' 'y (rad)' '\Delta r_E (m)' '\Delta v_E (m/s)'

};
[t,tL] = TimeLabel(dT*(0:(nSim-1)));

PlotSet(t, xPlot, 'x label', tL, 'y label', yL,...

The prediction UKF step is shown in the following listing.

function d = UKFPredict(d)

pS = chol(d.p)';
nS = length(d.m);
nSig = 2*nS + 1;
mM = repmat(d.m,1,nSig);
x = mM + d.c*[zeros(nS,1) pS -pS];

xH = Propagate(x, d);
d.m = xH*d.wM;
d.p = xH*d.w*xH' + d.q;
d.p = 0.5*(d.p + d.p'); % Force symmetry

%% Propagate each sigma point state vector
function x = Propagate(x, d)

for j = 1:size(x,2)
x(:,j) = RungeKutta(d.f, d.t, x(:,j), d.dT, d.fData);

end

UKFPredict uses RungeKutta for prediction that is done by numerical integration. In effect, we are
running a simulation of the model and just correcting the results with the next function, UKFUpdate.
This gets to the core of the Kalman filter. It is just a simulation of your model with a measurement
correction step. In the case of the conventional Kalman filter, we use a linear discrete-time model.

The update UKF step is shown in the following listing. The update propagates the state one time step.

function d = UKFUpdate(d)

% Get the sigma points
pS = d.c*chol(d.p)';
nS = length(d.m);
nSig = 2*nS + 1;
mM = repmat(d.m,1,nSig);
x = mM + [zeros(nS,1) pS -pS];
[y, r] = Measurement(x, d);
mu = y*d.wM;
s = y*d.w*y' + r;
c = x*d.w*y';
k = c/s;
d.v = d.y - mu;
d.m = d.m + k*d.v;
d.p = d.p - k*s*k';

%% Measurement estimates from the sigma points
function [y, r] = Measurement(x, d)

194

CHAPTER 10 KALMAN FILTERS

nSigma = size(x,2);

% Create the arrays
lR = length(d.r);
y = zeros(lR,nSigma);
r = d.r;

for j = 1:nSigma
f = feval(d.hFun, x(:,j), d.hData);
iR = 1:lR;
y(iR,j) = f;
end

The sigma points are generated using chol. chol is Cholesky factorization and generates an approxi-
mate square root of a matrix. A true matrix square root is more computationally expensive and the results
don’t really justify the penalty. The idea is to distribute the sigma points around the mean, and chol
works well. Here is an example that compares the two approaches:

>> z = [1 0.2;0.2 2]
z =

1.0000 0.2000
0.2000 2.0000

>> b = chol(z)
b =

1.0000 0.2000
0 1.4000

>> b*b
ans =

1.0000 0.4800
0 1.9600

>> q = sqrtm(z)
q =

0.9965 0.0830
0.0830 1.4118

>> q*q
ans =

1.0000 0.2000
0.2000 2.0000

The square root actually produces a square root! The diagonal of b*b is close to z, which is all that is
important. The measurement geometry in shown in Figure 10.8.

195

CHAPTER 10 KALMAN FILTERS

Figure 10.8: The measurement geometry. Our measurement is the angle.

Mass

r

Angle

Baseline

The results are shown in Figure 10.9. The errors ΔrE and ΔvE are just noise. The measurement goes
over a large angle range, which would make a linear approximation problematic.

Figure 10.9: The unscented Kalman filter results for state estimation.

0 1 2 3 4 5 6 7 8 9

Time (min)

0

10

20

r (
m

)

UKF Simulation

0 1 2 3 4 5 6 7 8 9

Time (min)

-1

0

1

v
(m

/s
)

0 1 2 3 4 5 6 7 8 9

Time (min)

-2

0

2

y
(ra

d)

0 1 2 3 4 5 6 7 8 9

Time (min)

-0.5

0

0.5

 r
E
 (m

)

0 1 2 3 4 5 6 7 8 9

Time (min)

-0.2

0

0.2

 v
E
 (m

/s
)

196

CHAPTER 10 KALMAN FILTERS

10.3 Using the UKF for Parameter Estimation
10.3.1 Problem
You want to learn the parameters of the spring-damper-mass system given a nonlinear angle measure-
ment.

10.3.2 Solution
The solution is to create a UKF configured as a parameter estimator. This will absorb measurements and
determine the mass, spring constant, and damping. It will autonomously learn about the system based on
a preexisting model. We develop the version that requires an estimate of the state that could be generated
with a UKF running in parallel, as in the previous recipe.

10.3.3 How It Works
Initialize the parameter filter with the expected value of the parameters, η [2]:

η̂(t0) = E{η̂0} (10.111)

and the covariance for the parameters

Pηo = E{(η(t0)− η̂0)(η(t0)− η̂0)
T} (10.112)

The update sequence begins by adding the parameter model uncertainty, Q, to the covariance, P,

P= P+Q (10.113)

Q is for the parameters, not the states. The sigma points are then calculated. These are points found by
adding the square root of the covariance matrix to the current estimate of the parameters.

ησ =
[

η̂ η̂ + γ
√
P η̂ − γ

√
P

]
(10.114)

γ is a factor that determines the spread of the sigma points. We use chol for the square root. If there are
L parameters, the P matrix is L×L, so this array will be L× (2L+1).

The state equations are of the form
ẋ= f (x,u, t) (10.115)

and the measurement equations are
y= h(x,u, t) (10.116)

x is the previous state of the system, as identified by the state estimator or other process. u is a structure
with all other inputs to the system that are not being estimated. η is a vector of parameters that are being
estimated and t is time. y is the vector of measurements. This is the dual estimation approach in that we
are not estimating x and η simultaneously.

The script, UKFPSim, for testing the UKF parameter estimation is shown below. We are not doing
the UKF state estimation to simplify the script. Normally you would run the UKF in parallel. We start by
initializing all parameters. KFInitialize takes parameter pairs to initialize the filters. The remainder
is the simulation loop and plotting.

197

CHAPTER 10 KALMAN FILTERS

%% UKFPSim
% Demonstrate parameter learning using Unscented Kalman Filter.
%% See also
% RungeKutta, RHSOscillator, TimeLabel, KFInitialize, UKFPUpdate
% AngleMeasurement

%% Initialize
nSim = 150; % Simulation steps
dT = 0.01; % Time step (sec)
d = RHSOscillator; % Get the default data structure
d.a = 0.0; % Disturbance acceleration
d.zeta = 0.0; % Damping ratio
d.omega = 2; % Undamped natural frequency
x = [1;0]; % Initial state [position;velocity]
y1Sigma = 0.0001; % 1 sigma measurement noise
q = 0.001; % Plant uncertainty
p = 0.4; % Initial covariance for the

parameter
dRHSUKF = struct('a',0.0,'zeta',0.0,'eta',0.1);
dKF = KFInitialize('ukfp','x',x,'f',@RHSOscillatorUKF,...

'fData',dRHSUKF,'r',y1Sigmaˆ2,'q',q,...
'p',p,'hFun',@LinearMeasurement,...
'dT',dT,'eta',d.omega/2,...
'alpha',1,'kappa',2,'beta',2);

dKF = UKFPWeight(dKF);
y = LinearMeasurement(x);

%% Simulation
xPlot = zeros(5,nSim);

for k = 1:nSim

% Update the Kalman Filter parameter estimates
dKF.x = x;

% Plot storage
xPlot(:,k) = [y;x;dKF.eta;dKF.p];

% Propagate (numerically integrate) the state equations
x = RungeKutta(@RHSOscillator, 0, x, dT, d);

% Measurements
y = LinearMeasurement(x) + y1Sigma*randn;

dKF.y = y;
dKF = UKFPUpdate(dKF);

end

%% Plot the results
yL = {'y (rad)' 'r (m)' 'v (m/s)' '\omega (rad/s)' 'p' };

198

CHAPTER 10 KALMAN FILTERS

[t,tL] = TimeLabel(dT*(0:(nSim-1)));

PlotSet(t, xPlot, 'x label', tL, 'y label', yL,...
'plot title', 'UKF Parameter Estimation', 'figure title', 'UKF Parameter

Estimation');

The UKF parameter update functional is shown in the following code. It uses the state estimate
generated by the UKF. As noted, we are using the exact value of the state generated by the simulation.
This function needs a specialized right-hand side that uses the parameter estimate, d.eta. We modified
RHSOscillator for this purpose and wrote RHSOscillatorUKF.

%% UKFPUPDATE Unscented Kalman Filter parameter update step
%% Form:
% d = UKFPUpdate(d)
%
%% Description
% Implement an Unscented Kalman Filter for parameter estimation.
% The filter uses numerical integration to propagate the state.
% The filter propagates sigma points, points computed from the
% state plus a function of the covariance matrix. For each parameter
% there are two sigma parameters. The current estimated state must be
% input each step.
%
%% Inputs
% d (1,1) UKF data structure
% .x (n,1) State
% .p (n,n) Covariance
% .q (n,n) State noise covariance
% .r (m,m) Measurement noise covariance
% .wM (1,2n+1) Model weights
% .wC (1,2n+1) Model weights
% .f (1,:) Pointer for the right hand side function
% .fData (.) Data structure with data for f
% .hFun (1,:) Pointer for the measurement function
% .hData (.) Data structure with data for hFun
% .dT (1,1) Time step (s)
% .t (1,1) Time (s)
% .eta (:,1) Parameter vector
% .c (1,1) Scaling constant
% .lambda (1,1) Scaling constant
%
%% Outputs
% d (1,1) UKF data structure
% .p (n,n) Covariance
% .eta (:,1) Parameter vector
%
%% References
% References: Van der Merwe, R. and Wan, E., "Sigma-Point Kalman Filters

for
% Probabilistic Inference in Dynamic State-Space Models".
% Matthew C. VanDyke, Jana L. Schwartz, Christopher D. Hall,

199

CHAPTER 10 KALMAN FILTERS

% "UNSCENTED KALMAN FILTERING FOR SPACECRAFT ATTITUDE STATE
AND

% PARAMETER ESTIMATION,"AAS-04-115.

function d = UKFPUpdate(d)

d.wA = zeros(d.L,d.n);
D = zeros(d.lY,d.n);
yD = zeros(d.lY,1);

% Update the covariance
d.p = d.p + d.q;

% Compute the sigma points
d = SigmaPoints(d);

% We are computing the states, then the measurements
% for the parameters +/- 1 sigma
for k = 1:d.n

d.fData.eta = d.wA(:,k);
x = RungeKutta(d.f, d.t, d.x, d.dT, d.fData);
D(:,k) = feval(d.hFun, x, d.hData);
yD = yD + d.wM(k)*D(:,k);

end

pWD = zeros(d.L,d.lY);
pDD = d.r;
for k = 1:d.n

wD = D(:,k) - yD;
pDD = pDD + d.wC(k)*(wD*wD');
pWD = pWD + d.wC(k)*(d.wA(:,k) - d.eta)*wD';

end

pDD = 0.5*(pDD + pDD');

% Incorporate the measurements
K = pWD/pDD;
dY = d.y - yD;
d.eta = d.eta + K*dY;
d.p = d.p - K*pDD*K';
d.p = 0.5*(d.p + d.p'); % Force symmetry

%% Create the sigma points for the parameters
function d = SigmaPoints(d)

n = 2:(d.L+1);
m = (d.L+2):(2*d.L + 1);
etaM = repmat(d.eta,length(d.eta));
sqrtP = chol(d.p);
d.wA(:,1) = d.eta;
d.wA(:,n) = etaM + d.gamma*sqrtP;
d.wA(:,m) = etaM - d.gamma*sqrtP;

200

CHAPTER 10 KALMAN FILTERS

It also has its own weight initialization function UKFPWeight.m.

%% UKFPWEIGHT Unscented Kalman Filter parameter estimation weights
%% Form:
% d = UKFPWeight(d)
%
%% Description
% Unscented Kalman Filter parameter estimation weights.
%
% The weight matrix is used by the matrix form of the Unscented
% Transform.
%
% The constant alpha determines the spread of the sigma points around x
% and is usually set to between 10e-4 and 1. beta incorporates prior
% knowledge of the distribution of x and is 2 for a Gaussian
% distribution. kappa is set to 0 for state estimation and 3 - number of
% states for parameter estimation.
%
%% Inputs
% d (.) Data structure with constants
% .kappa (1,1) 0 for state estimation, 3-#states
% .alpha (1,1) Determines spread of sigma points
% .beta (1,1) Prior knowledge - 2 for Gaussian
%
%% Outputs
% d (.) Data structure with constants
% .wM (1,2*n+1) Weight array
% .wC (1,2*n+1) Weight array
% .lambda (1,1) Scaling constant
% .wA (p,n) Empty matrix
% .L (1,1) Number of parameters to estimate
% .lY (1,1) Number of measurements
% .D (m,n) Empty matrix
% .n (1,1) Number of sigma i
%

function d = UKFPWeight(d)

d.L = length(d.eta);
d.lambda = d.alphaˆ2*(d.L + d.kappa) - d.L;
d.gamma = sqrt(d.L + d.lambda);
d.wC(1) = d.lambda/(d.L + d.lambda) + (1 - d.alphaˆ2 + d.beta);
d.wM(1) = d.lambda/(d.L + d.lambda);
d.n = 2*d.L + 1;
for k = 2:d.n

d.wC(k) = 1/(2*(d.L + d.lambda));
d.wM(k) = d.wC(k);

end

d.wA = zeros(d.L,d.n);
y = feval(d.hFun, d.x, d.hData);
d.lY = length(y);
d.D = zeros(d.lY,d.n);

201

CHAPTER 10 KALMAN FILTERS

RHSOscillatorUKF is the oscillator model used by the UKF. It has a different input format than
RHSOscillatorUKF.

%% RHSOSCILLATORUKF Right hand side of a double integrator.
%% Form
% xDot = RHSOscillatorUKF(t, x, a)
%
%% Description
% An oscillator models linear or rotational motion plus many other
% systems. It has two states, position and velocity. The equations of
% motion are:
%
% rDot = v
% vDot = a - omegaˆ2*r
%
% This can be called by the MATLAB Recipes RungeKutta function or any MATLAB
% integrator. Time is not used. This function is compatible with the
% UKF parameter estimation. eta is the parameter to be estimated which is
% omega in this case.
%
% If no inputs are specified, it will return the default data structure.
%
%% Inputs
% t (1,1) Time (unused)
% x (2,1) State vector [r;v]
% d (.) Data structure
% .a (1,1) Disturbance acceleration (m/sˆ2)
% .zeta (1,1) Damping ratio
% .eta (1,1) Natural frequency (rad/s)
%
%% Outputs
% x (2,1) State vector derivative d[r;v]/dt
%
%% References
% None.

function xDot = RHSOscillatorUKF(˜, x, d)

if(nargin < 1)
xDot = struct('a',0,'eta',0.1,'zeta',0);
return

end

xDot = [x(2);d.a-2*d.zeta*d.eta*x(2)-d.etaˆ2*x(1)];

LinearMeasurement is a simple measurement function for demonstration purposes. The UKF can
use arbitrarily complex measurement functions.

%% LINEARMEASUREMENT Function for an angle measurement
%% Form
% y = LinearMeasurement(x, d)
%
%% Description
% A linear measurement

202

CHAPTER 10 KALMAN FILTERS

%
%% Inputs
% x (2,1) State [r;v]
% d (.) Data structure
%
%% Outputs
% y (1,1) Distance
%
%% References
% None.

function y = LinearMeasurement(x, ˜)

if(nargin < 1)
y = [];
return

end

y = x(1);

The results of a simulation of an undamped oscillator are shown in Figure 10.10. The filter rapidly
estimates the undamped natural frequency. The result is noisy, however. You can explore this script by
varying the numbers in the script.

Figure 10.10: The UKF parameter estimation results.

0 0.5 1 1.5

Time (sec)

-1

0

1

y
(ra

d)

UKF Parameter Estimation

0 0.5 1 1.5

Time (sec)

-1

0

1

r (
m

)

0 0.5 1 1.5

Time (sec)

-2

-1

0

v
(m

/s
)

0 0.5 1 1.5

Time (sec)

1

2

3

 (r
ad

/s
)

0 0.5 1 1.5

Time (sec)

0

0.2

0.4

p

203

CHAPTER 10 KALMAN FILTERS

Summary
This chapter has demonstrated learning using Kalman filters. In this case learning is the estimation of
states and parameters for a damped oscillator. We looked at conventional and unscented Kalman filters.
We examined the parameter learning version of the latter. All examples were done using a damped
oscillator. Table 10.1 lists the code used in this chapter.

Table 10.1: Chapter Code Listing

File Description
AngleMeasurement Angle measurement of the mass
LinearMeasurement Position measurement of the mass
OscillatorSim Simulation of the damped oscillator
OscillatorDampingRatioSim Simulation of the damped oscillator with different damping ratios
RHSOscillator Dynamical model for the damped oscillator
RungeKutta Fourth-order Runge–Kutta integrator
PlotSet Create two-dimensional plots from a data set
TimeLabel Produce time labels and scaled time vectors
Gaussian Plot a Gaussian distribution
KFInitialize Initialize Kalman filters
KFSim Demonstration of a conventional Kalman filter
KFPredict Prediction step for a conventional Kalman filter
KFUpdate Update step for a conventional Kalman filter
EKFPredict Prediction step for an extended Kalman filter
EKFUpdate Update step for an extended Kalman filter
UKFPredict Prediction step for a UKF
UKFUpdate Update step for a UKF
UKFPUpdate Update step for a UKF parameter update
UKFSim Demonstration of a UKF
UKFPSim Demonstration of parameter estimation for a UKF
UKFWeights Generates weights for the UKF
UKFPWeights Generates weights for the UKF parameter estimator
RHSOscillatorUKF Dynamical model for the damped oscillator for use in UKF parameter

estimation

204

CHAPTER 10 KALMAN FILTERS

References
[1] S. Sarkka. Lecture 3: Bayesian Optimal Filtering Equations and the Kalman Filter. Technical re-

port, Department of Biomedical Engineering and Computational Science, Aalto University School
of Science, February 2011.

[2] M. C. VanDyke, J. L. Schwartz, and C. D. Hall. Unscented Kalman filtering for spacecraft attitude
state and parameter estimation. Advances in Astronautical Sciences, 2005.

205

CHAPTER 11

Adaptive Control

Control systems need to react to the environment in a predicable and repeatable fashion. Control systems
take measurements and use them to control the process. For example, a ship measures its heading and
changes its rudder angle to attain that heading.

Typically, control systems are designed and implemented with all of the parameters hard coded into
the software. This works very well in most circumstances, particularly when the system is well known
during the design process. When the system is not well defined, or is expected to change significantly
during operation, it may be necessary to implement learning control. For example, the batteries in an
electric car degrade over time. This leads to less range. An autonomous driving system would need to
learn that range was decreasing. This would be done by comparing the distance traveled with the battery
state of charge. More drastic, and sudden, changes can alter a system. For example, in an aircraft the air
data system might fail due to a sensor malfunction. If the Global Positioning System (GPS) were still
operating, the plane would want to switch to a GPS-only system. In a multiinput–multioutput control
system, a branch may fail, leaving other branches working fine. The system might have to modify to
operating branches in that case.

Learning and adaptive control are often used interchangeably. In this chapter you will learn a variety
of techniques for adaptive control for different systems. Each technique is applied to a different system,
but all are generally applicable to any control system.

Figure 11.1 provides a taxonomy of adaptive and learning control. The paths depend on the nature
of the dynamical system. The rightmost branch is tuning. This is something a designer would do during
testing, but it could also be done automatically as will be described in the self-tuning recipe 11.1. The
next path is for systems that will vary with time. Our first example is using model reference adaptive
control for a spinning wheel. This is discussed in Section 11.2.

The aircraft section 11.3 is for the longitudinal control of an aircraft that needs to work as the altitude
and speed change. You will learn how to implement a neural net to produce the critical parameters for
nonlinear control. This is an example of online learning. You have seen examples of neural nets in the
chapter on deep learning.

© Michael Paluszek, Stephanie Thomas 2017
M. Paluszek and S. Thomas,MATLAB Machine Learning, DOI 10.1007/978-1-4842-2250-8 11

207

CHAPTER 11 ADAPTIVE CONTROL

Figure 11.1: Taxonomy of adaptive or learning control.

Dynamics

Constant Unknown

Use Variable Parameter
Control

Constant Known

Tuning

Unpredictable Variations

Predictable Variations Constant Parameters

Autonomous Learning

Gain Scheduling

The final example in 11.4 is for ship control. You want to control the heading angle. The dynamics of
the ship are a function of the forward speed. This is an example of gain scheduling. While it isn’t really
learning from experience, it is adapting based on information about its environment.

11.1 Self-Tuning: Finding the Frequency of an Oscillator
We want to tune a damper so that we critically damp a spring system for which the spring constant
changes. Our system will work by perturbing the undamped spring with a step and measuring the fre-
quency using a fast Fourier transform (FFT). We then compute the damping using the frequency and add
a damper to the simulation. We then measure the undamped natural frequency again to see that it is the
correct value. Finally, we set the damping ratio to 1 and observe the response. The system in shown in
Figure 11.2.

208

CHAPTER 11 ADAPTIVE CONTROL

Figure 11.2: Spring-mass-damper system. The mass is on the right. The spring is on the top to the left of
the mass. The damper is below.

k

m F

c

x

In Chapter 10 we introduced parameter identification, which is another way of finding the frequency.
The approach here is to collect a large sample of data and process it in batch to find the natural frequency.
The equations for the system are

ṙ = v (11.1)

mv̇ = −cv− kr (11.2)

A dot above the symbols means first derivative with respect to time. That is,

ṙ =
dr
dt

(11.3)

The equations state that the change in position with respect to time is the velocity and the mass times the
change in velocity with respect to time is equal to a force proportional to its velocity and position. The
second equation is Newton’s law,

F = ma (11.4)

where

F = −cv− kr (11.5)

a =
dv
dt

(11.6)

Our control system generates the component of force −cv.

209

CHAPTER 11 ADAPTIVE CONTROL

11.1.1 Problem
We want to identify the frequency of an oscillator.

11.1.2 Solution
The solution is to have the control system adapt to the frequency of the spring. We will use an FFT to
identify the frequency of the oscillation.

11.1.3 How It Works
The following script shows how an FFT identifies the oscillation frequency for a damped oscillator.

The function is shown in the following code. We use the RHSOscillator dynamical model for
the system. We start with a small initial position to get it to oscillate. We also have a small damping ratio
so it will damp out. The resolution of the spectrum is dependent on the number of samples

r =
2π
nT

(11.7)

where n is the number of samples and T is the sampling period. The maximum frequency is

ω =
nr
2

(11.8)

%% Initialize
nSim = 2ˆ16; % Number of time steps
dT = 0.1; % Time step (sec)
dRHS = RHSOscillator; % Get the default data structure
dRHS.omega = 0.1; % Oscillator frequency
dRHS.zeta = 0.1; % Damping ratio
x = [1;0]; % Initial state [position;velocity]
y1Sigma = 0.000; % 1 sigma position measurement noise

%% Simulation
xPlot = zeros(3,nSim);

for k = 1:nSim

% Measurements
y = x(1) + y1Sigma*randn;

% Plot storage
xPlot(:,k) = [x;y];

% Propagate (numerically integrate) the state equations
x = RungeKutta(@RHSOscillator, 0, x, dT, dRHS);

end

%% Plot the results
yL = {'r (m)' 'v (m/s)' 'y_r (m)'};
[t,tL] = TimeLabel(dT*(0:(nSim-1)));

PlotSet(t, xPlot, 'x label', tL, 'y label', yL,...
'plot title', 'Oscillator', 'figure title', 'Oscillator');

FFTEnergy(xPlot(3,:), dT);

210

CHAPTER 11 ADAPTIVE CONTROL

The FFTEnergy function is shown in the following listing. The FFT takes the sampled time se-
quence and computes the frequency spectrum. We compute the FFT using MATLAB’s fft function.
We take the result and multiply it by its conjugate to get the energy. The first half of the result has the
frequency information.

function [e, w, wP] = FFTEnergy(y, tSamp, aPeak)

if(nargin < 3)
aPeak = 0.95;

end

n = size(y, 2);

% If the input vector is odd drop one sample
if(2*floor(n/2) ˜= n)

n = n - 1;
y = y(1:n,:);

end

x = fft(y);
e = real(x.*conj(x))/n;

hN = n/2;
e = e(1,1:hN);
r = 2*pi/(n*tSamp);
w = r*(0:(hN-1));

if(nargin > 1)
k = find(e > aPeak*max(e));
wP = w(k);

end

if(nargout == 0)
tL = sprintf('FFT Energy Plot: Resolution = %10.2e rad/sec',r);
PlotSet(w,log10(e),'x label','Frequency (rad/sec)','y label','Log
(Energy)','figure title',tL,'plot title',tL,'plot type','xlog');

end

Figure 11.3 shows the damped oscillation. Figure 11.4 shows the spectrum. We find the peak by
searching for the maximum value. The noise in the signal is seen at the higher frequencies. A noise-free
simulation is shown in Figure 11.5.

211

CHAPTER 11 ADAPTIVE CONTROL

Figure 11.3: Simulation of the damped oscillator.

The tuning approach is to

1. Excite the oscillator with a pulse.

2. Run it for 2n steps.

3. Do an FFT.

4. If there is only one peak, compute the damping gain.

The script is shown below. It calls FFTEnergy.m with aPeak set to 0.7. The disturbances are
Gaussian-distributed accelerations and there is noise in the measurement.

n = 4; % Number of measurement sequences
nSim = 2ˆ16; % Number of time steps
dT = 0.1; % Time step (sec)
dRHS = RHSOscillatorControl; % Get the default data structure
dRHS.omega = 0.1; % Oscillator frequency
zeta = 0.5; % Damping ratio
x = [0;0]; % Initial state [position;velocity]
y1Sigma = 0.001; % 1 sigma position measurement noise
a = 1; % Perturbation
kPulseStop = 10;
aPeak = 0.7;
a1Sigma = 0.01;

212

CHAPTER 11 ADAPTIVE CONTROL

Figure 11.4: The frequency spectrum. The peak is at the oscillation frequency of 0.1 rad/s.

%% Simulation
xPlot = zeros(3,n*nSim);
yFFT = zeros(1,nSim);
i = 0;
tuned = false;
wOsc = 0;

for j = 1:n
aJ = a;
for k = 1:nSim

i = i + 1;
% Measurements
y = x(1) + y1Sigma*randn;

% Plot storage
xPlot(:,i) = [x;y];
yFFT(k) = y;
dRHS.a = aJ + a1Sigma*randn;
if(k == kPulseStop)

213

CHAPTER 11 ADAPTIVE CONTROL

Figure 11.5: The frequency spectrum without noise.

aJ = 0;
end

% Propagate (numerically integrate) the state equations
x = RungeKutta(@RHSOscillatorControl, 0, x, dT, dRHS);

end
FFTEnergy(yFFT, dT);
[˜, ˜, wP] = FFTEnergy(yFFT, dT, aPeak);
if(length(wP) == 1)

wOsc = wP;
fprintf(1,'Estimated oscillator frequency %12.4f rad/s\n',wP);
dRHS.c = 2*zeta*wOsc;

else
fprintf(1,'Tuned\n');

end
end

%% Plot the results
yL = {'r (m)' 'v (m/s)' 'y_r (m)'};
[t,tL] = TimeLabel(dT*(0:(n*nSim-1)));

214

CHAPTER 11 ADAPTIVE CONTROL

PlotSet(t, xPlot, 'x label', tL, 'y label', yL,...
'plot title', 'Oscillator', 'figure title', 'Oscillator');

The results in the command window are

TuningSim
Estimated oscillator frequency 0.0997 rad/s
Tuned
Tuned
Tuned

This is a crude approach. As you can see from the FFT plots, the spectra are “noisy” due to the
sensor noise and Gaussian disturbance. The criterion for determining that it is underdamped is that it is
a distinctive peak. If the noise is large enough, we have to set lower thresholds.

An important point is that we must stimulate the system to identify the peak. All system identification,
parameter estimation, and tuning algorithms have this requirement. An alternative to a pulse (which has
a broad frequency spectrum) would be to use a sinusoidal sweep. That would excite any resonances and
make it easier to identify the peak.

215

CHAPTER 11 ADAPTIVE CONTROL

Figure 11.6: Tuning simulation results. The first four plots are the frequency spectrums taken at the end
of each sampling interval; the last shows the results over time.

216

CHAPTER 11 ADAPTIVE CONTROL

11.2 Model Reference Adaptive Control
We want to control a robot with an unknown load so that it behaves in a desired manner. The dynamical
model of the robot joint is [1]

dω
dt

=−aω +bu+ud (11.9)

where the damping a and/or input constants b are unknown. u is the input voltage and ud is a disturbance
angular acceleration. This is a first-order system. We would like the system to behave like the reference
model

Figure 11.7: Speed control of a robot for the model reference adaptive control demo.

Axis

Wheel

Base

dω
dt

=−amω +bmuc+ud (11.10)

11.2.1 Generating a Square Wave Input

11.2.1.1 Problem
We need to generate a square wave to stimulate the rotor.

11.2.1.2 Solution
For the purposes of simulation and testing our controller, we will generate a square wave with aMATLAB
function.

11.2.1.3 How It Works
The following function generates a square wave SquareWave.

function [v,d] = SquareWave(t, d)

if(nargin < 1)
if(nargout == 0)

Demo;
else

v = DataStructure;
end

return
end

if(d.state == 0)

217

CHAPTER 11 ADAPTIVE CONTROL

if(t - d.tSwitch >= d.tLow)
v = 1;
d.tSwitch = t;
d.state = 1;

else
v = 0;

end
else

if(t - d.tSwitch >= d.tHigh)
v = 0;
d.tSwitch = t;
d.state = 0;

else
v = 1;

end
end

function d = DataStructure
%% Default data structure

d = struct();
d.tLow = 10.0;
d.tHigh = 10.0;
d.tSwitch = 0;
d.state = 0;

function Demo
%% Demo

d = SquareWave;
t = linspace(0,100,1000);
v = zeros(1,length(t));
for k = 1:length(t)

[v(k),d] = SquareWave(t(k),d);
end

PlotSet(t,v,'x label', 't (sec)', 'y label', 'v', 'plot title','Square Wave'
,... 'figure title', 'Square Wave');

A square wave is shown in Figure 11.8. There are many ways to specify a square wave. This function
produces a square wave with a minimum of zero and maximum of 1. You specify the time at zero and
the time at 1 to create the square wave.

218

CHAPTER 11 ADAPTIVE CONTROL

Figure 11.8: Square wave.

0 10 20 30 40 50 60 70 80 90 100

t (sec)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

v

Square Wave

11.2.2 Implement Model Reference Adaptive Control

11.2.2.1 Problem
We want to control a system to behave like a particular model.

11.2.2.2 Solution
The solution is to implement model reference adaptive control (MRAC).

11.2.2.3 How It Works
Hence, the name model reference adaptive control. We will use the MIT rule to design the adaptation sys-
tem. The MIT rule was first developed at the MIT Instrumentation Laboratory (now Draper Laboratory)
that developed the Apollo and Shuttle guidance and control systems.

Consider a closed-loop system with one adjustable parameter, θ . The desired output is ym. Let

e= y− ym (11.11)

Define a loss function (or cost) as

J(θ) =
1
2
e2 (11.12)

219

CHAPTER 11 ADAPTIVE CONTROL

The square removes the sign. If the error is zero, the cost is zero. We would like to minimize J(θ). To
make J small we change the parameters in the direction of the negative gradient of J or

dθ
dt

= γ
∂J
∂θ

=−γe
∂e
∂θ

(11.13)

This is the MIT rule. This can be applied when there is more than one parameter. If the system is
changing slowly, then we can assume that θ is constant as the system adapts.

Let the controller be
u= θ1uc−θ2ω (11.14)

The second term provides the damping. The controller has two parameters. If they are

θ1 =
bm
b

(11.15)

θ2 =
am−a

b
(11.16)

the error is
e= ω −ωm (11.17)

With the parameters θ1 and θ2 the system is

dω
dt

=−(a+bθ2)ω +bθ1uc+ud (11.18)

To continue with the implementation we introduce the operator p= d
dt . Set ud = 0. We then write

pω =−(a+bθ2)ω +bθ1uc (11.19)

or

ω =
bθ1

p+a+bθ2
uc (11.20)

We need to get the partial derivatives of the error with respect to θ1 and θ2. These are

∂e
∂θ1

=
b

p+a+bθ2
uc (11.21)

∂e
∂θ2

= − b2θ1
(p+a+bθ2)2

uc (11.22)

from the chain rule for differentiation. Noting that

uc =
p+a+bθ2

bθ1
ω (11.23)

the second equation becomes

∂e
∂θ2

=
b

p+a+bθ2
y (11.24)

Since we don’t know a, let’s assume that we are pretty close to it. Then let

p+a≈ p+a+bθ2 (11.25)

220

CHAPTER 11 ADAPTIVE CONTROL

Our adaptation laws are now

dθ1
dt

= −γ
(

am
p+am

uc

)
e (11.26)

dθ2
dt

= γ
(

am
p+am

ω
)
e (11.27)

where γ is the adaptation gain. The terms in the parentheses are two differential equations, so the com-
plete set is

dx1
dt

= −amx1+amuc (11.28)

dx2
dt

= −amx2+amω (11.29)

dθ1
dt

= −γx1e (11.30)

dθ2
dt

= γx2e (11.31)

(11.32)

As noted before, the controller is

u = θ1uc−θ2ω (11.33)

e = ω −ωm (11.34)
dωm

dt
= −amωm+bmuc (11.35)

The MRAC is implemented in the function MRAC. The controller has five differential equations that
are propagated. RungeKutta is used for the propagation, but a less computationally intensive lower-
order integrator, such as Euler, could be used instead.

function d = MRAC(omega, d)

if(nargin < 1)
d = DataStructure;
return

end

d.x = RungeKutta(@RHS, 0, d.x, d.dT, d, omega);
d.u = d.x(3)*d.uC - d.x(4)*omega;

function d = DataStructure
%% Default data structure

d = struct();
d.aM = 2.0;
d.bM = 2.0;
d.x = [0;0;0;0;0];
d.uC = 0;
d.u = 0;
d.gamma = 1;
d.dT = 0.1;

221

CHAPTER 11 ADAPTIVE CONTROL

function xDot = RHS(˜, x, d, omega)
%% RHS for MRAC

e = omega - x(5);
xDot = [-d.aM*x(1) + d.aM*d.uC;...

-d.aM*x(2) + d.aM*omega;...
-d.gamma*x(1)*e;...
d.gamma*x(2)*e;...

-d.aM*x(5) + d.bM*d.uC];

11.2.3 Demonstrate MRAC for a Rotor

11.2.3.1 Problem
We want to control our rotor using MRAC.

11.2.3.2 Solution
The solution is to implement MRAC in a MATLAB script.

11.2.3.3 How It Works
MRAC is implemented in the script RotorSim. It calls MRAC to control the rotor. As in our other

scripts, we use PlotSet. Notice that we use two new options. One ’plot set’ allows you to put
more than one line on a subplot. The other ’legend’ adds legends to each plot. The cell array argument
to ’legend’ has a cell array for each plot. In this case we have two plots each with two lines, so the
cell array is

{{'true' 'estimated'} {'Control' 'Command'}}

Each plot legend is a cell entry within the overall cell array.
The rotor simulation script with MRAC is shown in the following listing. The square wave function

generates the command to the system that ω should track. RHSRotor, SquareWave and MRAC all
return default data structures.

%% Initialize
nSim = 4000; % Number of time steps
dT = 0.1; % Time step (sec)
dRHS = RHSRotor; % Get the default data structure
dC = MRAC;
dS = SquareWave;
x = 0.1; % Initial state vector

%% Simulation
xPlot = zeros(4,nSim);
theta = zeros(2,nSim);
t = 0;
for k = 1:nSim

% Plot storage
xPlot(:,k) = [x;dC.x(5);dC.u;dC.uC];
theta(:,k) = dC.x(3:4);
[uC, dS] = SquareWave(t, dS);
dC.uC = 2*(uC - 0.5);
dC = MRAC(x, dC);
dRHS.u = dC.u;

222

CHAPTER 11 ADAPTIVE CONTROL

% Propagate (numerically integrate) the state equations
x = RungeKutta(@RHSRotor, t, x, dT, dRHS);
t = t + dT;

end

%% Plot the results
yL = {'\omega (rad/s)' 'u'};
[t,tL] = TimeLabel(dT*(0:(nSim-1)));

h = PlotSet(t, xPlot, 'x label', tL, 'y label', yL,'plot title', {'Angular
Rate' 'Control'},... 'figure title', 'Rotor', 'plot set',{[1 2] [3 4]},'
legend',{{'true' 'estimated'} {'Control' 'Command'}});

PlotSet(theta(1,:), theta(2,:), 'x label', '\theta_1',...
'y label','\theta_2', 'plot title', 'Controller Parameters',...
'figure title', 'Controller Parameters');

The results are shown in Figure 11.9. We set the adaptation gain γ to 1. am and bm are set equal to 2.
a is set equal to 1 and b to 1

2 .

Figure 11.9:MRAC control of a first-order system.

0 1 2 3 4 5 6 7

Time (min)

-1.5

-1

-0.5

0

0.5

1

1.5

 (r
ad

/s
)

Angular Rate

true
estimated

0 1 2 3 4 5 6 7

Time (min)

-10

-5

0

5

10

u

Control

Control
Command

223

CHAPTER 11 ADAPTIVE CONTROL

The first plot shows the angular rate of the rotor and the control demand and actual control sent
to the wheel. The desired control is a square wave (generated by SquareWave). Notice the transient
in the applied control at the transitions of the square wave. The control amplitude is greater than the
commanded control. Notice also that the angular rate approaches the desired commanded square wave
shape.

Figure 11.10 shows the convergence of the adaptive gains, θ1 and θ2. They have converged by the
end of the simulation.

MRAC learns the gains of the system by observing the response to the control excitation. It requires
excitation to converge. This is the nature of all learning systems. If there is no stimulation, it isn’t possible
to observe the behavior of the system so that the system can learn. It is easy to find an excitation for a
first-order system. For higher-order systems, or nonlinear systems, this is more difficult.

Figure 11.10: Gain convergence in the MRAC controller.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

3
1

-0.5

0

0.5

1

1.5

2

2.5

3 2

Controller Parameters

224

CHAPTER 11 ADAPTIVE CONTROL

11.3 Longitudinal Control of an Aircraft
In this section we are going to control the longitudinal dynamics of an aircraft using learning control. We
will derive a simple longitudinal dynamics model with a “small” number of parameters. Our control will
use nonlinear dynamics inversion with a proportional–integral–derivative (PID) controller to control the
pitch dynamics. Learning will be done using a sigma-pi neural network.

We will use the learning approach developed at NASA Dryden Research Center [4]. The baseline
controller is a dynamic inversion-type controller with a PID control law. A neutral net [3] provides
learning while the aircraft is operating. The neutral network is a sigma-pi–type network, meaning that
the network sums the products of the inputs with their associated weights. The weights of the neural
network are determined by a training algorithm that uses

1. Commanded aircraft rates from the reference model

2. PID errors and

3. Adaptive control rates fed back from the neural network

11.3.1 Write the Differential Equations for the Longitudinal
Motion of an Aircraft

11.3.1.1 Problem
We want to model the longitudinal dynamics of an aircraft.

11.3.1.2 Solution
The solution is to write the right-hand-side function for the aircraft longitudinal dynamics differential
equations.

11.3.1.3 How It Works
The longitudinal dynamics of an aircraft are also known as the pitch dynamics. The dynamics are en-
tirely in the plane of symmetry of the aircraft. These dynamics include the forward and version motion
of the aircraft and the pitching of the aircraft about the axis perpendicular to the plane of symmetry.
Figure 11.11 shows an aircraft in flight. α is the angle of attack, the angle between the wing and the
velocity vector. We assume that the wind direction is opposite that of the velocity vector; that is, the
aircraft produces all of its wind. Drag is along the wind direction and lift is perpendicular to drag. The
pitch moment is around the center of mass. The model we will derive uses a small set of parameters yet
reproduces the longitudinal dynamics reasonably well. It is also easy for you to modify to simulate any
aircraft of interest. We summarized the symbols for the dynamical model in Table 11.1. Our aerodynamic
model is very simple. The lift and drag are

225

CHAPTER 11 ADAPTIVE CONTROL

Figure 11.11:Diagram of an aircraft in flight showing all the important quantities for longitudinal dynam-
ics simulation.

Lift

X

Pitch Moment

α

Drag
Velocity

Z

X

Inertial Coordinates

Z

L= pSCL (11.36)

D= pSCD (11.37)

where S is the wetted area, or the area that is counted in computing the aerodynamic forces, and p is the
dynamic pressure, the pressure on the aircraft caused by its velocity,

p=
1
2

ρv2 (11.38)

where ρ is the atmospheric density and v is the magnitude of the velocity. Atmospheric density is a
function of altitude. S is the wetted area, that is, the area of the aircraft that interacts with the airflow. For
low-speed flight, this is mostly the wings. Most books use q for dynamic pressure. We use q for pitch
angular rate (also a convention), so we use p here to avoid confusion.

The lift coefficient, CL, is
CL =CLα α (11.39)

226

CHAPTER 11 ADAPTIVE CONTROL

Table 11.1: Aircraft Dynamics Symbols

Symbol Description Units
g Acceleration of gravity at sea level 9.806 m/s2

h Altitude m
k Coefficient of lift-induced drag
m Mass kg
p Dynamic pressure N/m2

q Pitch angular rate rad/s
u x-velocity m/s
w z-velocity m/s
CL Lift coefficient
CD Drag coefficient
D Drag N
Iy Pitch moment of inertia kg-m2

L Lift N
M Pitch moment (torque) Nm
Me Pitch moment due to elevator Nm
re Elevator moment arm m
S Wetted area of wings m2

Se Wetted area of elevator m2

T Thrust N
X X force in the aircraft frame N
Z Z force in the aircraft frame N
α Angle of attack rad
γ Flight path angle rad
ρ Air density kg/m3

θ Pitch angle rad

and the drag coefficient, CD, is
CD =CD0 + kC2

L (11.40)

The drag equation is called the drag polar. Increasing the angle of attack increases the aircraft lift but
also increases the aircraft drag. The coefficient k is

k =
1

πε0AR
(11.41)

where ε0 is the Oswald efficiency factor that is typically between 0.75 and 0.85. AR is the wing as-
pect ratio. The aspect ratio is the ratio of the span of the wing to its chord. For complex shapes it is
approximately given by the formula

AR=
b2

S
(11.42)

where b is the span and S is the wing area. Span is measured from wingtip to wingtip. Gliders have very
high aspect ratios and delta-wing aircraft have low aspect ratios.

227

CHAPTER 11 ADAPTIVE CONTROL

The aerodynamic coefficients are nondimensional coefficients that when multiplied by the wetted
area of the aircraft, and the dynamic pressure, produce the aerodynamic forces.

The dynamical equations, the differential equations of motion, are [2]

m(u̇+qw) = X −mgsinθ +T cosε (11.43)

m(ẇ−qu) = Z+mgcosθ −T sinε (11.44)

Iyq̇ = M (11.45)

θ̇ = q (11.46)

m is the mass, u is the x-velocity, w is the z-velocity, q is the pitch angular rate, θ is the pitch angle,
T is the engine thrust, ε is the angle between the thrust vector and the x-axis, Iy is the pitch inertia, X
is the x-force, Z is the z-force, and M is the torque about the pitch axis. The coupling between x- and
z-velocities is caused by writing the force equations in the rotating frame. The pitch equation is about the
center of mass. These are a function of u, w, q and altitude, h, which is found from

ḣ= usinθ −wcosθ (11.47)

The angle of attack, α , is the angle between the u- and w-velocities and is

tanα =
w
u

(11.48)

The flight path angle γ is the angle between the vector velocity direction and the horizontal. It is related
to θ and α by the relationship

γ = θ −α (11.49)

This does not appear in the equations, but it is useful to compute when studying aircraft motion. The
forces are

X = Lsinα −Dcosα (11.50)

Z = −Lcosα −Dsinα (11.51)

The moment, or torque, is assumed due to the offset of the center of pressure and center of mass, which
is assumed to be along the x-axis.

M = (cp− c)Z (11.52)

where cp is the location of the center of pressure. The moment from the elevator is

Me = qreSe sin(δ) (11.53)

Se is the wetted area of the elevator and rE is the distance from the center of mass to the elevator. The
dynamical model is in RHSAircraft. The atmospheric density model is an exponential model and is
included as a subfunction in this function.

function [xDot, lift, drag, pD] = RHSAircraft(˜, x, d)

if(nargin < 1)
xDot = DataStructure;
return

end

228

CHAPTER 11 ADAPTIVE CONTROL

g = 9.806;

u = x(1);
w = x(2);
q = x(3);
theta = x(4);
h = x(5);

rho = AtmDensity(h);

alpha = atan(w/u);
cA = cos(alpha);
sA = sin(alpha);

v = sqrt(uˆ2 + wˆ2);
pD = 0.5*rho*vˆ2; % Dynamic pressure

cL = d.cLAlpha*alpha;
cD = d.cD0 + d.k*cLˆ2;

drag = pD*d.s*cD;
lift = pD*d.s*cL;

x = lift*sA - drag*cA;
z = -lift*cA - drag*sA;
m = d.c*z + pD*d.sE*d.rE*sin(d.delta);

sT = sin(theta);
cT = cos(theta);

tEng = d.thrust*d.throttle;
cE = cos(d.epsilon);
sE = sin(d.epsilon);

uDot = (x + tEng*cE)/d.mass - q*w - g*sT + d.externalAccel(1);
wDot = (z - tEng*sE)/d.mass + q*u + g*cT + d.externalAccel(2);
qDot = m/d.inertia + d.externalAccel(3);
hDot = u*sT - w*cT;

xDot = [uDot;wDot;qDot;q;hDot];

function d = DataStructure
%% Data structure

% F-16
d = struct();
d.cLAlpha = 2*pi; % Lift coefficient
d.cD0 = 0.0175; % Zero lift drag coefficient
d.k = 1/(pi*0.8*3.09); % Lift coupling coefficient A/R

3.09, Oswald Efficiency Factor 0.8
d.epsilon = 0; % rad
d.thrust = 76.3e3; % N

229

CHAPTER 11 ADAPTIVE CONTROL

d.throttle = 1;
d.s = 27.87; % wing area mˆ2
d.mass = 12000; % kg
d.inertia = 1.7295e5; % kg-mˆ2
d.c = 2; % m
d.sE = 25; % mˆ2

We will use a model of the F-16 aircraft for our simulation. The F-16 is a single-engine supersonic
multirole combat aircraft used by many countries. The F-16 is shown in Figure 11.12.

The inertia matrix is found by taking this model, distributing the mass among all the vertices, and
computing the inertia from the formulas

mk =
m
N

(11.54)

c = ∑
k

mkrk (11.55)

I = ∑
k

mk(rk− c)2 (11.56)

where N is the number of nodes and rk is the vector from the origin (which is arbitrary) to node k.

inr =

1.0e+05 *

0.3672 0.0002 -0.0604
0.0002 1.4778 0.0000

-0.0604 0.0000 1.7295

Figure 11.12: F-16 model.

230

CHAPTER 11 ADAPTIVE CONTROL

The F-16 data are given in Table 11.2.

Table 11.2: F-16 data.

Symbol Field Value Description Units
CLα cLAlpha 6.28 Lift coefficient
CD0 cD0 0.0175 Zero lift drag coefficient
k k 0.1288 Lift coupling coefficient
ε epsilon 0 Thrust angle from the x-axis rad
T thrust 76.3e3 Engine thrust N
S s 27.87 Wing area m2

m mass 12000 Aircraft mass kg
Iy inertia 1.7295e5 z-axis inertia kg-m2

c− cp c 1 Offset of center of mass from the center of pressure m
Se sE 3.5 Elevator area m2

re (rE) 4.0 Elevator moment arm m

There are many limitations to this model. First of all, the thrust is applied immediately with 100%
accuracy. The thrust is also not a function of airspeed or altitude. Real engines take some time to achieve
the commanded thrust and the thrust levels change with airspeed and altitude. The elevator also responds
instantaneously. Elevators are driven by motors, usually hydraulic but sometimes pure electric, and they
take time to reach a commanded angle. The aerodynamics are very simple. Lift and drag are complex
functions of airspeed and angle of attack. Usually they are modeled with large tables of coefficients.
We also model the pitching moment by a moment arm. Usually the torque is modeled by a table. No
aerodynamic damping is modeled though this appears in most complete aerodynamic models for aircraft.
You can easily add these features by creating functions

C_L = CL(v,h,alpha,delta)
C_D = CD(v,h,alpha,delta)
C_M = CL(v,h,vdot,alpha,delta)

11.3.2 Numerically Finding Equilibrium

11.3.2.1 Problem
We want to determine the equilibrium state for the aircraft.

11.3.2.2 Solution
The solution is to compute the Jacobian for the dynamics.

11.3.2.3 How It Works
We want to start every simulation from an equilibrium state. This is done using the function

EquilibriumState. It uses fminsearch to minimize

u̇2+ ẇ2 (11.57)

given the flight speed, altitude, and flight path angle. It then computes the elevator angle needed to zero
the pitch angular acceleration. It has a built-in demo for equilibrium-level flight at 10 km.

231

CHAPTER 11 ADAPTIVE CONTROL

%% Code
if(nargin < 1)

Demo;
return

end

x = [v;0;0;0;h];
[˜,˜,drag] = RHSAircraft(0, x, d);
y0 = [0;drag];
cost(1) = RHS(y0, d, gamma, v, h);
y = fminsearch(@RHS, y0, [], d, gamma, v, h);
w = y(1);
thrust = y(2);
u = sqrt(vˆ2-wˆ2);
alpha = atan(w/u);
theta = gamma + alpha;
cost(2) = RHS(y, d, gamma, v, h);
x = [u;w;0;theta;h];
d.thrust = thrust;
d.delta = 0;
[xDot,˜,˜,p] = RHSAircraft(0, x, d);
delta = -asin(d.inertia*xDot(3)/(d.rE*d.sE*p));
d.delta = delta;
radToDeg = 180/pi;

fprintf(1,'Velocity %8.2f m/s\n',v);
fprintf(1,'Altitude %8.2f m\n',h);
fprintf(1,'Flight path angle %8.2f deg\n',gamma*radToDeg);
fprintf(1,'Z speed %8.2f m/s\n',w);
fprintf(1,'Thrust %8.2f N\n',y(2));
fprintf(1,'Angle of attack %8.2f deg\n',alpha*radToDeg);
fprintf(1,'Elevator %8.2f deg\n',delta*radToDeg);
fprintf(1,'Initial cost %8.2e\n',cost(1));
fprintf(1,'Final cost %8.2e\n',cost(2));

function cost = RHS(y, d, gamma, v, h)
%% Cost function for fminsearch

w = y(1);
d.thrust = y(2);
d.delta = 0;
u = sqrt(vˆ2-wˆ2);
alpha = atan(w/u);
theta = gamma + alpha;
x = [u;w;0;theta;h];
xDot = RHSAircraft(0, x, d);
cost = xDot(1:2)'*xDot(1:2);

function Demo
%% Demo
d = RHSAircraft;
gamma = 0.0;

232

CHAPTER 11 ADAPTIVE CONTROL

v = 250;

The results of the demo are

>> EquilibriumState
Velocity 250.00 m/s
Altitude 10000.00 m
Flight path angle 0.00 deg
Z speed 13.84 m/s
Thrust 11148.95 N
Angle of attack 3.17 deg
Elevator -11.22 deg
Initial cost 9.62e+01
Final cost 1.17e-17

The initial and final costs show how successful fminsearch was in achieving the objective of mini-
mizing the w and u accelerations.

11.3.3 Numerical Simulation of the Aircraft

11.3.3.1 Problem
We want to simulate the aircraft.

11.3.3.2 Solution
The solution is to create a script that calls the right-hand side in a loop and plots the results.

11.3.3.3 How It Works
The simulation script is shown below. It computes the equilibrium state and then simulates the dynamics
in a loop by calling RungeKutta. It then uses PlotSet to plot the results.

%% Initialize
nSim = 2000; % Number of time steps
dT = 0.1; % Time step (sec)
dRHS = RHSAircraft; % Get the default data structure has F-16 data
h = 10000;
gamma = 0.0;
v = 250;
nPulse = 10;
[x, dRHS.thrust, dRHS.delta, cost] = EquilibriumState(gamma, v, h, dRHS);
fprintf(1,'Finding Equilibrium: Starting Cost %12.4e Final Cost %12.4e\n',

cost);

accel = [0.0;0.1;0.0];

%% Simulation
xPlot = zeros(length(x)+2,nSim);
for k = 1:nSim

% Plot storage
[˜,L,D] = RHSAircraft(0, x, dRHS);
xPlot(:,k) = [x;L;D];
% Propagate (numerically integrate) the state equations
if(k > nPulse)

dRHS.externalAccel = [0;0;0];
else

233

CHAPTER 11 ADAPTIVE CONTROL

dRHS.externalAccel = accel;
end
x = RungeKutta(@RHSAircraft, 0, x, dT, dRHS);
if(x(5) <= 0)

break;
end

end

xPlot = xPlot(:,1:k);

%% Plot the results
yL = {'u (m/s)' 'w (m/s)' 'q (rad/s)' '\theta (rad)' 'h (m)' 'L (N)' 'D

(N)'};
[t,tL] = TimeLabel(dT*(0:(k-1)));

PlotSet(t, xPlot(1:5,:), 'x label', tL, 'y label', yL(1:5),...

This simulation puts the aircraft into a slight climb.

>> AircraftSimOpenLoop
Velocity 250.00 m/s
Altitude 10000.00 m
Flight path angle 0.57 deg
Z speed 13.83 m/s
Thrust 12321.13 N
Angle of attack 3.17 deg
Elevator 11.22 deg
Initial cost 9.62e+01
Final cost 5.66e-17
Finding Equilibrium: Starting Cost 9.6158e+01 Final Cost 5.6645e-17

The simulation results are shown in Figure 11.13. The aircraft climbs steadily. Two oscillations are seen:
a high-frequency one primarily associated with pitch and a low-frequency one with the velocity of the
aircraft.

234

CHAPTER 11 ADAPTIVE CONTROL

Figure 11.13: Open-loop response to a pulse for the F-16 in a shallow climb.

11.3.4 Find a Limiting and Scaling function for a Neural Net

11.3.4.1 Problem
You need a function to scale and limit measurements.

11.3.4.2 Solution
Use a sigmoid function.

11.3.4.3 How It Works
The neural net uses the following sigmoid function:

g(x) =
1− e−kx

1+ e−kx (11.58)

The sigmoid function with k = 1 is plotted in the following script.

%% Initialize
x = linspace(-7,7);

%% Sigmoid
s = (1-exp(-x))./(1+exp(-x));

PlotSet(x, s, 'x label', 'x', 'y label', 's',...
'plot title', 'Sigmoid', 'figure title', 'Sigmoid');

235

CHAPTER 11 ADAPTIVE CONTROL

Results are shown in Figure 11.14.

Figure 11.14: Sigmoid function. At large values of x, the sigmoid function returns ±1.

11.3.5 Find a Neural Net for the Learning Control

11.3.5.1 Problem
We need a neural net to add learning to the aircraft control system.

11.3.5.2 Solution
Use a sigma-pi function.

11.3.5.3 How It Works
The adaptive neural network for the pitch axis has seven inputs. The output of the neural network is a
pitch angular acceleration that augments the control signal coming from dynamic inversion controller.
The control system is shown in Figure 11.15.

236

CHAPTER 11 ADAPTIVE CONTROL

Figure 11.15: Aircraft control.

Pilot Input

Reference
Model

+ PID
Controller

- -

Model
Inversion Aircraft

Neural
Network

The sigma-pi neutral net is shown in Figure 11.16 for a two-input system.

Figure 11.16: Sigma-pi neural net. Π stands for product and Σ stands for sum.

The output is
y= w1c+w2x1+w3x2+w4x1x2 (11.59)

The weights are selected to represent the nonlinear function. For example, suppose we want to represent
the dynamic pressure

y=
1
2

ρv2 (11.60)

We let x1 = ρ and x2 = v2. Set w4 =
1
2 and all other weights to zero. Suppose we didn’t know the constant

1
2 . We would like our neural net to determine the weight through measurements.

237

CHAPTER 11 ADAPTIVE CONTROL

Learning for a neural net means determining the weights so that our net replicates the function it is
modeling. Define the vector z, which is the result of the product operations. In our two-input case this
would be

z=

⎡
⎢⎢⎣

1
x1
x2
x1x2

⎤
⎥⎥⎦ (11.61)

x1 and x2 are after the sigmoid operation. The output is

y= wT z (11.62)

We could assemble multiple inputs and outputs
[
y1 y2 · · ·

]
= wT [z1 z2 · · ·

]
(11.63)

where zk is a column array. We can solve for w using least squares. Define the vector of y to be Y and the
matrix of z to be Z. The solution for w is

Y = ZTw (11.64)

The least-squares solution is

w=
(
ZZT)−1

ZYT (11.65)

This gives the best fit to w for the measurements Y and inputs Z. Suppose we take another measure-
ment. We would then repeat this with bigger matrices. Clearly, this is impractical. As a side note you
would really compute this using an inverse. There are better numerical methods for doing least squares.
MATLAB has the pinv function. For example,

>> z = rand(4,4);
>> w = rand(4,1);
>> y = w'*z;
>> wL = inv(z*z')*z*y'

wL =

0.8308
0.5853
0.5497
0.9172

>> w

w =

0.8308
0.5853
0.5497
0.9172

>> pinv(z')*y'

ans =

238

CHAPTER 11 ADAPTIVE CONTROL

0.8308
0.5853
0.5497
0.9172

As you can see, they all agree! This is a good way to initially train your neural net. Collect as many
measurements as you have values of z and compute the weights. Your net is then ready to go.

The recursive approach is to initialize the recursive trainer with n values of z and y.

p =
(
ZZT)−1

(11.66)

w = pZY (11.67)

The recursive learning algorithm is

p = p− pzzT p
1+ zT pz

(11.68)

k = pz (11.69)

w = w+ k
(
y− zTw

)
(11.70)

The following script demonstrates recursive learning or training. It starts with an initial estimate based
on a four-element training set. It then recursively learns based on new data.

w = rand(4,1); % Initial guess
Z = randn(4,4);
Y = Z'*w;

wN = w + 0.1*randn(4,1); % True weights are a little different
n = 300;
zA = randn(4,n); % Random inputs
y = wN'*zA; % 100 new measurements

% Batch training
p = inv(Z*Z'); % Initial value
w = p*Z*Y; % Initial value

%% Recursive learning
dW = zeros(4,n);
for j = 1:n

z = zA(:,j);
p = p - p*(z*z')*p/(1+z'*p*z);
w = w + p*z*(y(j) - z'*w);
dW(:,j) = w - wN; % Store for plotting

end

%% Plot the results
yL = cell(1,4);
for j = 1:4

yL{j} = sprintf('\\Delta W_%d',j);
end

PlotSet(1:n,dW,'x label','Sample','y label',yL,...
'plot title','Recursive Training',...
'figure title','Recursive Training');

239

CHAPTER 11 ADAPTIVE CONTROL

Figure 11.17 shows the results. After an initial transient the learning converges. Every time you run
this you will get different answers because we initialize with random values.

Figure 11.17: Recursive training or learning. After an initial transient the weights converge quickly.

You will notice that the recursive learning algorithm is identical in form to the conventional Kalman
filter given in Section 10.1.4. Our learning algorithm was derived from batch least squares, which is an
alternative derivation for the Kalman filter.

11.3.6 Enumerate All Sets of Inputs

11.3.6.1 Problem
We need a function to enumerate all possible sets of combinations.

11.3.6.2 Solution
Write a combination function.

240

CHAPTER 11 ADAPTIVE CONTROL

11.3.6.3 How It Works
We hand coded the products of the inputs. For more general code we want to enumerate all sets of inputs.
If we have n inputs and want to take them k at a time, the number of sets is

n!
(n− k)!k!

(11.71)

The code to enumerate all sets is in the function Combinations.

%% Demo
if(nargin < 1)

Combinations(1:4,3)
return

end

%% Special cases
if(k == 1)

c = r';
return

elseif(k == length(r))
c = r;
return

end

%% Recursion
rJ = r(2:end);
c = [];
if(length(rJ) > 1)

for j = 2:length(r)-k+1
rJ = r(j:end);
nC = NumberOfCombinations(length(rJ),k-1);
cJ = zeros(nC,k);
cJ(:,2:end) = Combinations(rJ,k-1);
cJ(:,1) = r(j-1);
if(˜isempty(c))

c = [c;cJ];
else

c = cJ;
end

end
else

c = rJ;
end
c = [c;r(end-k+1:end)];

function j = NumberOfCombinations(n,k)
%% Compute the number of combinations
j = factorial(n)/(factorial(n-k)*factorial(k));

241

CHAPTER 11 ADAPTIVE CONTROL

This handles two special cases on input and then calls itself recursively for all other cases. Here are some
examples:

>> Combinations(1:4,3)

ans =

1 2 3
1 2 4
1 3 4
2 3 4

>> Combinations(1:4,2)

ans =

1 2
1 3
1 4
2 3
2 4
3 4

You can see that if we have 4 inputs and want all possible combinations we end up with 14 total!
This indicates a practical limit to a sigma-pi neural network as the number of weights will grow fast as
the number of inputs increases.

11.3.7 Write a General Neural Net Function

11.3.7.1 Problem
We need a neural net function for general problems.

11.3.7.2 Solution
Use a sigma-pi function.

11.3.7.3 How It Works
The following code shows how we implement the sigma-pi neural net. SigmaPiNeuralNet has
action as its first input. You use this to access the functionality of the function. Actions are

1. “initialize”: initialize the function

2. “set constant”: set the constant term

3. “batch learning”: perform batch learning

4. “recursive learning”: perform recursive learning

5. “output”: generate outputs without training

You usually go in order when running the function. Setting the constant is not needed if the default of 1
is fine.

The functionality is distributed among subfunctions called from the switch statement.

% None.

242

CHAPTER 11 ADAPTIVE CONTROL

function [y, d] = SigmaPiNeuralNet(action, x, d)

% Demo or default data structure
if(nargin < 1)

if(nargout == 1)
y = DefaultDataStructure;

else
Demo;

end
return

end

switch lower(action)
case 'initialize'

d = CreateZIndices(x, d);
d.w = zeros(size(d.zI,1)+1,1);
y = [];

case 'set constant'
d.c = x;
y = [];

case 'batch learning'
[y, d] = BatchLearning(x, d);

case 'recursive learning'
[y, d] = RecursiveLearning(x, d);

case 'output'
[y, d] = NNOutput(x, d);

otherwise
error('%s is not an available action',action);

end

function d = CreateZIndices(x, d)
%% Create the indices

n = length(x);
m = 0;
nF = factorial(n);
for k = 1:n

m = m + nF/(factorial(n-k)*factorial(k));
end

d.z = zeros(m,1);
d.zI = cell(m,1);

i = 1;
for k = 1:n

c = Combinations(1:n,k);
for j = 1:size(c,1)

243

CHAPTER 11 ADAPTIVE CONTROL

d.zI{i} = c(j,:);
i = i + 1;

end
end
d.nZ = m+1;

function d = CreateZArray(x, d)
%% Create array of products of x

n = length(x);

d.z(1) = d.c;
for k = 1:d.nZ-1

d.z(k+1) = 1;
for j = 1:length(d.zI(k))

d.z(k+1) = d.z(k)*x(d.zI{k}(j));
end

end

function [y, d] = RecursiveLearning(x, d)
%% Recursive Learning

d = CreateZArray(x, d);
z = d.z;
d.p = d.p - d.p*(z*z')*d.p/(1+z'*d.p*z);
d.w = d.w + d.p*z*(d.y - z'*d.w);
y = z'*d.w;

function [y, d] = NNOutput(x, d)
%% Output without learning

x = SigmoidFun(x,d.kSigmoid);

d = CreateZArray(x, d);
y = d.z'*d.w;

function [y, d] = BatchLearning(x, d)
%% Batch Learning

z = zeros(d.nZ,size(x,2));

x = SigmoidFun(x,d.kSigmoid);

for k = 1:size(x,2)
d = CreateZArray(x(:,k), d);
z(:,k) = d.z;

end
d.p = inv(z*z');
d.w = (z*z')\z*d.y;
y = z'*d.w;

function d = DefaultDataStructure

244

CHAPTER 11 ADAPTIVE CONTROL

%% Default data structure

d = struct();
d.w = [];
d.c = 1; % Constant term
d.zI = {};
d.z = [];
d.kSigmoid = 0.0001;
d.y = [];

The demo shows an example of using the function to model dynamic pressure. Our inputs are the
altitude and the square of the velocity. The neutral net will try to fit

y= w1c+w2h+w3v
2+w4hv

2 (11.72)

to
y= 0.6125e−0.0817h.1.15v2 (11.73)

We get the default data structure. Then we initialize the filter with an empty x. We then get the initial
weights by using batch learning. The number of columns of f x should be at least twice the number of
inputs. This gives a starting pmatrix and initial estimate of weights. We then perform recursive learning.
It is important that the field kSigmoid is small enough so that valid inputs are in the linear region of
the sigmoid function. Note that this can be an array so that you can use different scalings on different
inputs.

%% Sigmoid function

kX = k.*x;
s = (1-exp(-kX))./(1+exp(-kX));

function Demo
%% Demo

x = zeros(2,1);

d = SigmaPiNeuralNet;
[˜, d] = SigmaPiNeuralNet('initialize', x, d);

h = linspace(10,10000);
v = linspace(10,400);
v2 = v.ˆ2;
q = 0.5*AtmDensity(h).*v2;

n = 5;
x = [h(1:n);v2(1:n)];
d.y = q(1:n)';
[y, d] = SigmaPiNeuralNet('batch learning', x, d);

fprintf(1,'Batch Results\n# Truth Neural Net\n');
for k = 1:length(y)

fprintf(1,'%d: %12.2f %12.2f\n',k,q(k),y(k));
end

245

CHAPTER 11 ADAPTIVE CONTROL

n = length(h);
y = zeros(1,n);
x = [h;v2];
for k = 1:n

d.y = q(k);
[y(k), d] = SigmaPiNeuralNet('recursive learning', x(:,k), d);

end

yL = {'q (N/mˆ2)' 'v (m/s)' 'h (m)'};

The batch results are as follows. This is at low altitude.

>> SigmaPiNeuralNet
Batch Results
Truth Neural Net
1: 61.22 61.17
2: 118.24 118.42
3: 193.12 192.88
4: 285.38 285.52
5: 394.51 394.48

The recursive learning results are shown in Figure 11.18. The results are pretty good over a wide
range of altitudes. You could then just use the “update” action during aircraft operation.

Figure 11.18: Recursive training for the dynamic pressure example.

0 10 20 30 40 50 60 70 80 90 100

Sample

0

2

4

q
(N

/m
2
)

10 4 Dynamic Pressure

Truth
NN

0 10 20 30 40 50 60 70 80 90 100

Sample

0

200

400

v
(m

/s
)

Velocity

0 10 20 30 40 50 60 70 80 90 100

Sample

0

5000

10000

h
(m

)

Altitude

246

CHAPTER 11 ADAPTIVE CONTROL

11.3.8 Implement PID Control

11.3.8.1 Problem
We want a PID controller.

11.3.8.2 Solution
Write a function to implement PID control.

11.3.8.3 How It Works
Assume with we have a double integrator driven by a constant input

ẍ= u (11.74)

where

ẍ=
dx
dt

(11.75)

The result is

x=
1
2
ut2+ x(0)+ ẋ(0)t (11.76)

The simplest control is to add a feedback controller

uc =−K (τdẋ+ x) (11.77)

where K is the forward gain and τ is the damping time constant. Our dynamical equation is now

ẍ+K (τdẋ+ x) = u (11.78)

The damping term will cause the transients to die out. When that happens the second derivative and first
derivatives of x are zero and we end up with an offset

x=
u
K

(11.79)

This is generally not desirable. You could increase K until the offset were small, but that would mean
your actuator would need to produce higher forces or torques. What we have at the moment is a PD
controller, or proportional derivative. Let’s add another term to the controller

uc =−K

(
τdẋ+ x+

1
τi

∫
x

)
(11.80)

This is now a PID controller, or proportional–integral–derivative controller. There is now a gain propor-
tional to the integral of x. We add the new controller and then take another derivative to get

...
x +K

(
τdẍ+ ẋ+

1
τi
x

)
= u̇ (11.81)

Now in steady state

x=
τi
K
u̇ (11.82)

If u is constant, the offset is zero. Let

s=
d
dt

(11.83)

247

CHAPTER 11 ADAPTIVE CONTROL

Then

s3x(s)+K

(
τds2x(s)+ sx(s)+

1
τi
x(s)

)
= su(s) (11.84)

uc(s)
w(s)

= Kp

(
1+ τds+

1
τis

)
(11.85)

where τd is the rate time constant, which is how long the system will take to damp, and τi is how fast the
system will integrate out a steady disturbance.

The open-loop transfer function is

w(s)
u(s)

=
Kp

s2

(
1+ τds+

1
τis

)
(11.86)

where s= jω and j =
√
−1. The closed-loop transfer function is

w(s)
u(s)

=
s

s3+Kpτds2+Kps+Kp/τi
(11.87)

The desired closed-loop transfer function is

w(s)
ud(s)

=
s

(s+ γ)(s2+2ζ σs+σ2)
(11.88)

or

w(s)
u(s)

=
s

s3+(γ +2ζ σ)s2+σ(σ +2ζ γ)s+ γσ2 (11.89)

The parameters are

Kp = σ(σ +2ζ γ) (11.90)

τi =
σ +2ζ γ

γσ
(11.91)

τd =
γ +2ζ σ

σ(σ +2ζ γ)
(11.92)

This is a design for a PID. However, it is not possible to write this in the desired state-space form

ẋ = Ax+Au (11.93)

y = Cx+Du (11.94)

because it has a pure differentiator. We need to add a filter to the rate term so that it looks like

s
τrs+1

(11.95)

instead of s. We aren’t going to derive the constants and will leave it as an exercise for the reader. The
code for the PID is in PID.

248

CHAPTER 11 ADAPTIVE CONTROL

function [a, b, c, d] = PID(zeta, omega, tauInt, omegaR, tSamp)

% Demo
if(nargin < 1)

Demo;
return

end

% Input processing
if(nargin < 4)

omegaR = [];
end

% Default roll-off
if(isempty(omegaR))

omegaR = 5*omega;
end

% Compute the PID gains
omegaI = 2*pi/tauInt;

c2 = omegaI*omegaR;
c1 = omegaI+omegaR;
b1 = 2*zeta*omega;
b2 = omegaˆ2;
g = c1 + b1;
kI = c2*b2/g;
kP = (c1*b2 + b1.*c2 - kI)/g;
kR = (c1*b1 + c2 + b2 - kP)/g;

% Compute the state space model
a = [0 0;0 -g];
b = [1;g];
c = [kI -kR*g];

It is interesting to evaluate the effect of the integrator. This is shown in Figure 11.19. The code is the
demo in PID. Instead of numerically integrating the differential equations, we convert them into sampled
time and propagate them. This is handy for linear equations. The double-integrator equations are in the
form

xk+1 = axk+buk (11.96)

y = cxk+duk (11.97)

This is the same form as the PID controller.

249

CHAPTER 11 ADAPTIVE CONTROL

% Convert to discrete time
if(nargin > 4)

[a,b] = CToDZOH(a,b,tSamp);
end

function Demo
%% Demo

% The double integrator plant
dT = 0.1; % s
aP = [0 1;0 0];
bP = [0;1];
[aP, bP] = CToDZOH(aP, bP, dT);

% Design the controller
[a, b, c, d] = PID(1, 0.1, 100, 0.5, dT);

% Run the simulation
n = 2000;
p = zeros(2,n);
x = [0;0];
xC = [0;0];

for k = 1:n
% PID Controller
y = x(1);
xC = a*xC + b*y;
uC = c*xC + d*y;
p(:,k) = [y;uC];
x = aP*x + bP*(1-uC); % Unit step response

end

It takes about 2 minutes to drive x to zero, which is close to the 100 seconds specified for the integra-
tor.

250

CHAPTER 11 ADAPTIVE CONTROL

Figure 11.19: PID control given a unit input.

0 0.5 1 1.5 2 2.5 3 3.5

Time (min)

0

10

20

30

40

50

60

x
PID

0 0.5 1 1.5 2 2.5 3 3.5

Time (min)

0

0.5

1

1.5

u

PID

11.3.9 Demonstrate PID control of Pitch for the Aircraft

11.3.9.1 Problem
We want to control pitch with a PID control.

11.3.9.2 Solution
Write a script to implement the controller with the PID controller and pitch dynamic inversion compen-
sation.

11.3.9.3 How It Works
The PID controller changes the elevator angle to produce a pitch acceleration to rotate the aircraft. In
addition, additional elevator movement is needed to compensate for changes in the accelerations due to
lift and drag as the aircraft changes its pitch orientation. This is done using the pitch dynamic inver-
sion function. This returns the pitch acceleration that must be compensated for when applying the pitch
control.

function qDot = PitchDynamicInversion(x, d)

if(nargin < 1)
qDot = DataStructure;
return

end

251

CHAPTER 11 ADAPTIVE CONTROL

u = x(1);
w = x(2);
h = x(5);

rho = AtmDensity(h);

alpha = atan(w/u);
cA = cos(alpha);
sA = sin(alpha);

v = sqrt(uˆ2 + wˆ2);
pD = 0.5*rho*vˆ2; % Dynamic pressure

cL = d.cLAlpha*alpha;
cD = d.cD0 + d.k*cLˆ2;

drag = pD*d.s*cD;
lift = pD*d.s*cL;

z = -lift*cA - drag*sA;
m = d.c*z;
qDot = m/d.inertia;

function d = DataStructure
%% Data structure

% F-16
d = struct();
d.cLAlpha = 2*pi; % Lift coefficient
d.cD0 = 0.0175; % Zero lift drag coefficient
d.k = 1/(pi*0.8*3.09); % Lift coupling coefficient A/R

3.09, Oswald Efficiency Factor 0.8
d.s = 27.87; % wing area mˆ2
d.inertia = 1.7295e5; % kg-mˆ2
d.c = 2; % m
d.sE = 25; % mˆ2
d.delta = 0; % rad
d.rE = 4; % m
d.externalAccel = [0;0;0]; % [m/sˆ2;m/sˆ2;rad/sˆ2[

The simulation incorporating the controls is shown below. There is a flag to turn on control and
another to turn on the learning control.

% Options for control
addLearning = true;
addControl = true;

%% Initialize the simulation
nSim = 1000; % Number of time steps
dT = 0.1; % Time step (sec)
dRHS = RHSAircraft; % Get the default data structure has F-16

data

252

CHAPTER 11 ADAPTIVE CONTROL

h = 10000;
gamma = 0.0;
v = 250;
nPulse = 10;
pitchDesired = 0.2;
dL = load('PitchNNWeights');
[x, dRHS.thrust, deltaEq, cost] = EquilibriumState(gamma, v, h, dRHS);
fprintf(1,'Finding Equilibrium: Starting Cost %12.4e Final Cost %12.4e\n',

cost);

if(addLearning)
temp = load('DRHSL');
dRHSL = temp.dRHSL;
temp = load('DNN');
dNN = temp.d;

else
temp = load('DRHSL');
dRHSL = temp.dRHSL;

end

accel = [0.0;0.0;0.0];

% Design the PID Controller
[aC, bC, cC, dC] = PID(1, 0.1, 100, 0.5, dT);
dRHS.delta = deltaEq;
xDotEq = RHSAircraft(0, x, dRHS);
aEq = xDotEq(3);
xC = [0;0];

%% Simulation
xPlot = zeros(length(x)+8,nSim);
for k = 1:nSim

% Control
[˜,L,D,pD] = RHSAircraft(0, x, dRHS);

% Measurement
pitch = x(4);

% PID control
if(addControl)

pitchError = pitch - pitchDesired;
xC = aC*xC + bC*pitchError;
aDI = PitchDynamicInversion(x, dRHSL);
aPID = -(cC*xC + dC*pitchError);

else
pitchError = 0;
aPID = 0;

end
% Learning
if(addLearning)

xNN = [x(4);x(1)ˆ2 + x(2)ˆ2];

253

CHAPTER 11 ADAPTIVE CONTROL

aLearning = SigmaPiNeuralNet('output', xNN, dNN);
else

aLearning = 0;
end

if(addControl)
aTotal = aPID - (aDI + aLearning);

% Convert acceleration to elevator angle
gain = dRHS.inertia/(dRHS.rE*dRHS.sE*pD);
dRHS.delta = asin(gain*aTotal);

else
dRHS.delta = deltaEq;

end

% Plot storage
xPlot(:,k) = [x;L;D;aPID;pitchError;dRHS.delta;aPID;aDI;aLearning];

% Propagate (numerically integrate) the state equations
if(k > nPulse)

dRHS.externalAccel = [0;0;0];
else

dRHS.externalAccel = accel;
end
x = RungeKutta(@RHSAircraft, 0, x, dT, dRHS);

% A crash
if(x(5) <= 0)

break;
end

end

%% Plot the results
xPlot = xPlot(:,1:k);
yL = {'u (m/s)' 'w (m/s)' 'q (rad/s)' '\theta (rad)' 'h (m)' 'L (N)' 'D

(N)' 'a_{PID} (rad/sˆ2)' '\delta\theta (rad)' '\delta (rad)' ...
'a_{PID}' 'a_{DI}' 'a_{L}'};

[t,tL] = TimeLabel(dT*(0:(k-1)));

PlotSet(t, xPlot(1:5,:), 'x label', tL, 'y label', yL(1:5),...
'plot title', 'Aircraft', 'figure title', 'Aircraft State');

PlotSet(t, xPlot(6:7,:), 'x label', tL, 'y label', yL(6:7),...
'plot title', 'Aircraft', 'figure title', 'Aircraft L and D');

PlotSet(t, xPlot(8:10,:), 'x label', tL, 'y label', yL(8:10),...
'plot title', 'Aircraft', 'figure title', 'Aircraft Control');

PlotSet(t, xPlot(11:13,:), 'x label', tL, 'y label', yL(11:13),...
'plot title', 'Aircraft', 'figure title', 'Control Acceleratins');

254

CHAPTER 11 ADAPTIVE CONTROL

We command a 0.2-radian pitch angle using the PID control. The results are shown in Figure 11.20,
Figure 11.21, and Figure 11.22.

Figure 11.20: Aircraft pitch angle change. The aircraft oscillates due to the pitch dynamics.

0 10 20 30 40 50 60 70 80 90 100

Time (sec)

150
200
250

u
(m

/s
)

Aircraft

0 10 20 30 40 50 60 70 80 90 100

Time (sec)

10
20
30

w
 (m

/s
) Aircraft

0 10 20 30 40 50 60 70 80 90 100

Time (sec)

-0.02
0

0.02

q
(ra

d/
s)

Aircraft

0 10 20 30 40 50 60 70 80 90 100

Time (sec)

0
0.2
0.4

3
(ra

d)

Aircraft

0 10 20 30 40 50 60 70 80 90 100

Time (sec)

1
1.1
1.2

h
(m

)

10 4 Aircraft

The maneuver increases the drag and we don’t adjust the throttle to compensate. This will cause the
airspeed to drop. In implementing the controller we neglected to consider coupling between states, but
this can be added easily.

255

CHAPTER 11 ADAPTIVE CONTROL

Figure 11.21: Aircraft pitch angle change. Notice the changes in lift and drag with angle.

0 10 20 30 40 50 60 70 80 90 100

Time (sec)

1

1.1

1.2

1.3

1.4

1.5

L
(N

)

x 10 5 Aircraft

0 10 20 30 40 50 60 70 80 90 100

Time (sec)

1

1.2

1.4

1.6

1.8

D
(N

)

x 10 4 Aircraft

11.3.10 Create the Neural Net for the Pitch Dynamics

11.3.10.1 Problem
We want a nonlinear inversion controller with a PID controller and the neural net learning system.

11.3.10.2 Solution
Train the neural net with a script that takes the angle and velocity squared input and computes the pitch
acceleration error.

11.3.10.3 How It Works
The following script computes the pitch acceleration for a slightly different set of parameters. It then
processes the delta-acceleration. The script passes a range of pitch angles to the function and learns the
acceleration. We use the velocity squared as an input because the dynamic pressure is proportional to
the dynamic pressure. Thus, a base acceleration (in dRHSL) is for our “a priori” model. dRHS is the
measured values. We assume that these are obtained during flight testing.

dRHS = RHSAircraft; % Get the default data structure has F-16
% data

h = 10000;
gamma = 0.0;
v = 250;

256

CHAPTER 11 ADAPTIVE CONTROL

Figure 11.22: Aircraft pitch angle change. The PID acceleration is much lower than the pitch inversion
acceleration.

% Get the equilibrium state
[x, dRHS.thrust, deltaEq, cost] = EquilibriumState(gamma, v, h, dRHS);

% Angle of attack
alpha = atan(x(2)/x(1));
cA = cos(alpha);
sA = sin(alpha);

% Create the assumed properties
dRHSL = dRHS;
dRHSL.cD0 = 2.2*dRHS.cD0;
dRHSL.k = 1.0*dRHSL.k;

% 2 inputs
xNN = zeros(2,1);
d = SigmaPiNeuralNet;
[˜, d] = SigmaPiNeuralNet('initialize', xNN, d);

theta = linspace(0,pi/8);
v = linspace(300,200);
n = length(theta);

257

CHAPTER 11 ADAPTIVE CONTROL

aT = zeros(1,n);
aM = zeros(1,n);

for k = 1:n
x(4) = theta(k);
x(1) = cA*v(k);
x(2) = sA*v(k);
aT(k) = PitchDynamicInversion(x, dRHSL);
aM(k) = PitchDynamicInversion(x, dRHS);

end

% The delta pitch acceleration
dA = aM - aT;

% Inputs to the neural net
v2 = v.ˆ2;
xNN = [theta;v2];

% Outputs for training
d.y = dA';
[aNN, d] = SigmaPiNeuralNet('batch learning', xNN, d);

% Save the data for the aircraft simulation
save('DRHSL','dRHSL');
save('DNN', 'd');

The resulting weights are saved in a MAT-file for use in AircraftSim. The simulation uses dRHS,
but our pitch acceleration model uses dRHSL. The latter is saved in another MAT-file.

>> PitchNeuralNetTraining
Velocity 250.00 m/s
Altitude 10000.00 m
Flight path angle 0.00 deg
Z speed 13.84 m/s
Thrust 11148.95 N
Angle of attack 3.17 deg
Elevator 11.22 deg
Initial cost 9.62e+01
Final cost 1.17e-17

258

CHAPTER 11 ADAPTIVE CONTROL

Figure 11.23: Neural net fit to the delta-acceleration

As can be seen, the neural net reproduces the model very well. The script also outputs DNN.mat, which
contains the trained neural net data.

11.3.11 Demonstrate the Controller in a Nonlinear Simulation

11.3.11.1 Problem
We want to demonstrate our learning control system.

11.3.11.2 Solution
Enable the control functions to the simulation script described in this chapter.

11.3.11.3 How It Works
After training the neural net in the previous recipe we set addLearning to true. The weights are read
in. When learning control is on, it uses the right-hand side. PitchDynamicInversion uses modified
parameters that were used in the learning script to compute the weight. This simulates the uncertainty in
the models.

We command a 0.2-radian pitch angle using the PID learning control. The results are shown in
Figure 11.24, Figure 11.25, and Figure 11.26. The figures show without learning control on the left and
with learning control on the right.

259

CHAPTER 11 ADAPTIVE CONTROL

Figure 11.24: Aircraft pitch angle change. Lift and drag variations are shown.

Figure 11.25: Aircraft pitch angle change. Without learning control the elevator saturates.

Learning control helps the performance of the controller. However, the weights are fixed through-
out the simulation. Learning occurs prior to the controller becoming active. The control system is still
sensitive to parameter changes since the learning part of the control was computed for a predetermined
trajectory. Our weights were determined only as a function of pitch angle and velocity squared. Addi-
tional inputs would improve the performance. There are many opportunities for you to try to expand and
improve the learning system.

260

CHAPTER 11 ADAPTIVE CONTROL

Figure 11.26: Aircraft pitch angle change. The PID acceleration is much lower than the pitch inversion
acceleration.

11.4 Ship Steering: Implement Gain Scheduling
for Steering Control of a Ship

11.4.1 Problem
We want to steer a ship at all speeds.

11.4.2 Solution
The solution is to use gain scheduling to set the gains based on speeds. The gain scheduled is learned
by automatically computing gains from the dynamical equations of the ship. This is similar to the self-
tuning example except that we are seeking a set of gains for all speeds, not just one. In addition, we
assume that we know the model of the system.

Figure 11.27: Ship heading control for gain scheduling control.

261

CHAPTER 11 ADAPTIVE CONTROL

11.4.3 How It Works
The dynamical equations for the heading of a ship are in state-space form [1].

⎡
⎣ v̇

ṙ
ψ̇

⎤
⎦=

⎡
⎢⎣

(
u
l

)
a11 ua12 0(

u
l2

)
a21

(
u
l

)
a22 0

0 1 0

⎤
⎥⎦
⎡
⎣ v

r
ψ

⎤
⎦+

⎡
⎢⎢⎣

(
u2
l

)
b1(

u2

l2

)
b2
0

⎤
⎥⎥⎦δ +

⎡
⎣ αv

αr

0

⎤
⎦ (11.98)

v is the transverse speed, u is the ship’s speed, l is the ship length, r is the turning rate, and ψ is the
heading angle. αv and αr are disturbances. The ship is assumed to be moving at speed u. This is achieved
by the propeller that is not modeled. You’ll note we leave out the equation for forward motion. The
control is the rudder angle δ . Notice that if u = 0, the ship cannot be steered. All of the coefficients in
the state matrix are functions of u, except for the heading angle. Our goal is to control the heading given
the disturbance acceleration in the first equation and the disturbance angular rate in the second.

The disturbances only affect the dynamics states, r and v. The last state, ψ , is a kinematic state and
does not have a disturbance. Table 11.3 lists the files used in this chapter.

Table 11.3: Ship parameters [1].

Parameter Minesweeper Cargo Tanker
l 55 161 350

a11 -0.86 -0.77 -0.45
a12 -0.48 -0.34 -0.44
a21 -5.20 -3.39 -4.10
a22 -2.40 -1.63 -0.81
b1 0.18 0.17 0.10
b2 1.40 -1.63 -0.81

The ship model is shown in the following code. The second and third outputs are for use in the
controller. Notice that the differential equations are linear in the state and the control. Both matrices are
a function of the forward velocity. The default parameters are for the minesweeper in the table.

function [xDot, a, b] = RHSShip(˜, x, d)

if(nargin < 1)
xDot = struct('l',100,'u',10,'a',[-0.86 -0.48;-5.2 -2.4],'b',[0.18;-1.4],'

alpha',[0;0;0],'delta',0);
return

end

uOL = d.u/d.l;
uOLSq = d.u/d.lˆ2;
uSqOl = d.uˆ2/d.l;
a = [uOL*d.a(1,1) d.u*d.a(1,2) 0;...

uOLSq*d.a(2,1) uOL*d.a(2,2) 0;...
0 1 0];

b = [uSqOl*d.b(1);...
uOLˆ2*d.b(2);...
0];

xDot = a*x + b*d.delta + d.alpha;

262

CHAPTER 11 ADAPTIVE CONTROL

In the ship simulation we linearly increase the forward speed while commanding a series of heading
psi changes. The controller takes the state-space model at each time step and computes new gains,
which are used to steer the ship. The controller is a linear quadratic regulator. We can use full state
feedback because the states are easily modeled. Such controllers will work perfectly in this case but are
a bit harder to implement when you need to estimate some of the states or have unmodeled dynamics.

%% Initialize
nSim = 10000; % Number of time steps
dT = 1; % Time step (sec)
dRHS = RHSShip; % Get the default data structure
x = [0;0.001;0.0]; % [lateral velocity;angular velocity;

heading]
u = linspace(10,20,nSim)*0.514; % m/s
qC = eye(3); % State cost in the controller
rC = 0.1; % Control cost in the controller

% Desired heading angle
psi = [zeros(1,nSim/4) ones(1,nSim/4) 2*ones(1,nSim/4) zeros(1,nSim/4)];

%% Simulation
xPlot = zeros(3,nSim);
gain = zeros(nSim,3);
delta = zeros(1,nSim);
for k = 1:nSim

% Plot storage
xPlot(:,k) = x;
dRHS.u = u(k);

% Control
% Get the state space matrices
[˜,a,b] = RHSShip(0, x, dRHS);
gain(k,:) = QCR(a, b, qC, rC);
dRHS.delta = -gain(k,:)*[x(1);x(2);x(3) - psi(k)]; % Rudder angle
delta(k) = dRHS.delta;

% Propagate (numerically integrate) the state equations
x = RungeKutta(@RHSShip, 0, x, dT, dRHS);

end

%% Plot the results
yL = {'v (m/s)' 'r (rad/s)' '\psi (rad)' 'u (m/s)' 'Gain v' 'Gain r' '

Gain \psi' '\delta (rad)' };
[t,tL] = TimeLabel(dT*(0:(nSim-1)));

PlotSet(t, [xPlot;u], 'x label', tL, 'y label', yL(1:4),...
'plot title', 'Ship', 'figure title', 'Ship');

The quadratic regulator generator code is shown in the following lists. It generates the gain from
the matrix Riccati equation. A Riccati equation is an ordinary differential equation that is quadratic in
the unknown function. In steady state this reduces to the algebraic Riccati equation that is solved in this
function.

263

CHAPTER 11 ADAPTIVE CONTROL

function k = QCR(a, b, q, r)

[sinf,rr] = Riccati([a,-(b/r)*b';-q',-a']);

if(rr == 1)
disp('Repeated roots. Adjust q, r or n');

end

k = r\(b'*sinf);

function [sinf, rr] = Riccati(g)
%% Ricatti
% Solves the matrix Riccati equation.
%
% Solves the matrix Riccati equation in the form
%
% g = [a r]
% [q -a']

rg = size(g);

[w, e] = eig(g);

es = sort(diag(e));

% Look for repeated roots
j = 1:length(es)-1;

if (any(abs(es(j)-es(j+1))<eps*abs(es(j)+es(j+1)))),
rr = 1;

else
rr = 0;

end

% Sort the columns of w
ws = w(:,real(diag(e)) < 0);

sinf = real(ws(rg/2+1:rg,:)/ws(1:rg/2,:));

The results are given in Figure 11.28. Note how the gains evolve. The gain on the angular rate r is
nearly constant. The other two gains increase with speed. This is an example of gain scheduling. The
difference is that we autonomously compute the gains from measurements of the ship’s forward speed.

264

CHAPTER 11 ADAPTIVE CONTROL

Figure 11.28: Ship steering simulation. The states are shown on the left with the forward velocity. The
gains and rudder angle are shown on the right. Notice the “pulses” in the rudder to make the maneuvers.

The next script is a modified version of ShipSim that is a shorter duration, with only one course
change, and with disturbances in both angular rate and lateral velocity.

%% Initialize
nSim = 300; % Number of time steps
dT = 1; % Time step (sec)
dRHS = RHSShip; % Get the default data structure
x = [0;0.001;0.0]; % [lateral velocity;angular velocity;

heading]
u = linspace(10,20,nSim)*0.514; % m/s
qC = eye(3); % State cost in the controller
rC = 0.1; % Control cost in the controller
alpha = [0.01;0.001]; % 1 sigma disturbances

% Desired heading angle
psi = [zeros(1,nSim/6) ones(1,5*nSim/6)];

%% Simulation
xPlot = zeros(3,nSim);
gain = zeros(nSim,3);
delta = zeros(1,nSim);
for k = 1:nSim

% Plot storage
xPlot(:,k) = x;
dRHS.u = u(k);

% Control
% Get the state space matrices
[˜,a,b] = RHSShip(0, x, dRHS);
gain(k,:) = QCR(a, b, qC, rC);
dRHS.alpha = [alpha.*randn(2,1);0];
dRHS.delta = -gain(k,:)*[x(1);x(2);x(3) - psi(k)]; % Rudder angle
delta(k) = dRHS.delta;

265

CHAPTER 11 ADAPTIVE CONTROL

% Propagate (numerically integrate) the state equations
x = RungeKutta(@RHSShip, 0, x, dT, dRHS);

end

%% Plot the results
yL = {'v (m/s)' 'r (rad/s)' '\psi (rad)' 'u (m/s)' 'Gain v' 'Gain r'

'Gain \psi' '\delta (rad)' };
[t,tL] = TimeLabel(dT*(0:(nSim-1)));

PlotSet(t, [xPlot(1:3,:);delta], 'x label', tL, 'y label', yL([1:3 8]),...

The results are given in Figure 11.29.

Figure 11.29: Ship steering simulation. The states are shown on the left with the rudder angle. The distur-
bances are Gaussian white noise.

266

CHAPTER 11 ADAPTIVE CONTROL

Summary
This chapter has demonstrated adaptive or learning control. You learned about model tuning, model
reference adaptive control, adaptive control, and gain scheduling. Table 11.4 lists the files used in this
chapter.

Table 11.4: Chapter Code Listing

File Description
AircraftSim Simulation of the longitudinal dynamics of an aircraft
AtmDensity Atmospheric density using a modified exponential model
Combinations Enumerates n integers for 1:n taken k at a time
EquilibriumState Finds the equilibrium state for an aircraft
FFTEnergy Generates FFT energy
FFTSim Demonstration of the FFT
MRAC Implement MRAC
PID Implements a PID controller
PitchDynamicInversion Pitch angular acceleration
PitchNeuralNetTraining Train the pitch acceleration neural net
QCR Generates a full state feedback controller
RecursiveLearning Demonstrates recursive neural net training or learning
RHSAircraft Right-hand side for aircraft longitudinal dynamics
RHSOscillatorControl Right-hand side of a damped oscillator with a velocity gain
RHSRotor Right-hand side for a rotor
RHSShip Right-hand side for a ship steering model
RotorSim Simulation of MRAC
ShipSim Simulation of ship steering
ShipSimDisturbance Simulation of ship steering with disturbances
SigmaPiNeuralNet Implements a sigma-pi neural net
Sigmoid Plot a sigmoid function
SquareWave Generate a square wave
TuningSim Controller tuning demonstration
WrapPhase Keep angles between −π and π

267

CHAPTER 11 ADAPTIVE CONTROL

References
[1] K. J. Åström and B. Wittenmark. Adaptive Control, Second Edition. Addison-Wesley, 1995.
[2] A. E. Bryson Jr. Control of Spacecraft and Aircraft. Princeton, 1994.
[3] Byoung S. Kim and Anthony J. Calise. Nonlinear flight control using neural networks. Journal of

Guidance, Control, and Dynamics, 20(1):26–33, 1997.
[4] Peggy S. Williams-Hayes. Flight Test Implementation of a Second Generation Intelligent Flight

Control System. Technical Report NASA/TM-2005-213669, NASA Dryden Flight Research Center,
November 2005.

268

CHAPTER 12

Autonomous Driving

Consider a primary car that is driving along a highway at variable speeds. It carries a radar that measures
azimuth, range, and range rate. Many cars pass the primary car, some of which change lanes from behind
the car and cut in front. The multiple-hypothesis system tracks all cars around the primary car. At the
start of the simulation there are no cars in the radar field of view. One car passes and cuts in front of the
radar car. The other two just pass in their lanes. You want to accurately track all cars that your radar can
see.

There are two elements to this problem. One is to model the motion of the tracked automobiles using
measurements to improve your estimate of each automobile’s location and velocity. The second is to
systematically assign measurements to different tracks. A track should represent a single car, but the
radar is just returning measurements on echoes; it doesn’t know anything about the source of the echoes.

You will solve the problem by first implementing a Kalman filter to track one automobile. We need
to write measurement and dynamics functions that will be passed to the Kalman filter, and we need a
simulation to create the measurements. You’ll then combine the filter with the software to assign mea-
surements to tracks, called multiple-hypothesis testing. You should master Chapter 10, on Kalman filters,
before digging into this material.

12.1 Modeling the Automobile Radar

12.1.1 Problem

The sensor utilized for this example will be the automobile radar. The radar measures azimuth, range,
and range rate. We need two functions: one for the simulation and the second for use by the unscented
Kalman filter (UKF).

12.1.2 How It Works

The radar model is extremely simple. It assumes the radar measures line-of-sight range, range rate, and
azimuth, the angle from the forward axis of the car. The model skips all the details of radar signal
processing and outputs those three quantities. This type of simple model is always the best when you
start a project. Later on you will need to add a very detailed model that has been verified against test
data, to demonstrate that your system works as expected.

The position and velocity of the radar are entered through the data structure. This does not model the
signal-to-noise ratio of a radar. The power received from a radar goes as 1

r4
. In this model the signal goes

© Michael Paluszek, Stephanie Thomas 2017
M. Paluszek and S. Thomas,MATLAB Machine Learning, DOI 10.1007/978-1-4842-2250-8 12

269

CHAPTER 12 AUTONOMOUS DRIVING

to zero at the maximum range. The range is found from the difference in position between the radar and
the target.

δ =

⎡
⎣ x− xr

y− yr
z− zr

⎤
⎦ (12.1)

The range is then

ρ =
√

δ 2
x +δ 2

y +δ 2
z (12.2)

The delta velocity is

ν =

⎡
⎣ vx− vxr

vy− vyr
vz− vzr

⎤
⎦ (12.3)

In both equations the subscript r denotes the radar. The range rate is

ρ̇ =
νTδ

ρ
(12.4)

12.1.3 Solution
The AutoRadar function handles multiple targets and can generate radar measurements for an entire
trajectory. This is really convenient because you can give it your trajectory and see what it returns. This
gives you a physical feel for the problem without running a simulation. It also allows you to be sure
the sensor model is doing what you expect! This is important because all models have assumptions and
limitations. It may be that the model really isn’t suitable for your application. For example, this model is
two dimensional. If you are concerned about your system getting confused about a car driving across a
bridge above your automobile, this model will not be useful in testing that scenario.

Notice that the function has a built-in demo and, if there are no outputs, will plot the results. Adding
demos to your code is a nice way to make your functions more user-friendly to other people using your
code and even to you when you encounter the code again several months after writing the code! We
put the demo in a subfunction because it is long. If the demo is one or two lines, a subfunction isn’t
necessary. Just before the demo function is the function defining the data structure.

%% AUTORADAR - Models automotive radar for simulation
%% Form:
% [y, v] = AutoRadar(x, d)
%
%% Description
% Automotive (2D) radar.
%
% Returns azimuth, range and range rate. The state vector may be
% any order. You pass the indices for the position and velocity states.
% The angle of the car is passed in d even though it may be in the state

function [y, v] = AutoRadar(x, d)

% Demo
if(nargin < 1)

if(nargout == 0)
Demo;

else
y = DataStructure;

270

CHAPTER 12 AUTONOMOUS DRIVING

end
return

end

m = size(d.kR,2);
n = size(x,2);
y = zeros(3*m,n);
v = ones(m,n);
cFOV = cos(d.fOV);

% Build an array of random numbers for speed
ran = randn(3*m,n);

% Loop through the time steps
for j = 1:n

i = 1;
s = sin(d.theta(j));
c = cos(d.theta(j));
cIToC = [c s;-s c];

% Loop through the targets
for k = 1:m

xT = x(d.kR(:,k),j);
vT = x(d.kV(:,k),j);
th = x(d.kT(1,k),j);
s = sin(th);
c = cos(th);
cTToIT = [c -s;s c];
dR = cIToC*(xT - d.xR(:,j));
dV = cIToC*(cTToIT*vT - cIToC'*d.vR(:,j));
rng = sqrt(dR'*dR);
uD = dR/rng;

% Apply limits
if(d.noLimits || (uD(1) > cFOV && rng < d.maxRange))

y(i ,j) = rng + d.noise(1)*ran(i ,j);
y(i+1,j) = dR'*dV/y(i,j) + d.noise(2)*ran(i+1,j);
y(i+2,j) = atan(dR(2)/dR(1)) + d.noise(3)*ran(i+2,j);

else
v(k,j) = 0;

end
i = i + 3;

end
end

% Plot if no outputs are requested
if(nargout < 1)

[t, tL] = TimeLabel(d.t);

% Every 3rd y is azimuth
i = 3:3:3*m;
y(i,:) = y(i,:)*180/pi;

271

CHAPTER 12 AUTONOMOUS DRIVING

yL = {'Range (m)' 'Range Rate (m/s)', 'Azimuth (deg)' 'Valid Data'};
PlotSet(t,[y;v],'x label',tL','y label',yL,'figure title','Auto Radar',...

'plot title','Auto Radar');

clear y
end

function d = DataStructure
%% Default data structure
d.kR = [1;2];
d.kV = [3;4];
d.kT = 5;
d.theta = [];
d.xR = [];
d.vR = [];
d.noise = [0.02;0.0002;0.01];
d.fOV = 0.95*pi/16;
d.maxRange = 60;
d.noLimits = 1;
d.t = [];

function Demo
%% Demo
omega = 0.02;
d = DataStructure;
n = 1000;
d.xR = [linspace(0,1000,n);zeros(1,n)];
d.vR = [ones(1,n);zeros(1,n)];
t = linspace(0,1000,n);
a = omega*t;
x = [linspace(10,10+1.05*1000,n);2*sin(a);...

1.05*ones(1,n); 2*omega*cos(a);zeros(1,n)];
d.theta = zeros(1,n);
d.t = t;

AutoRadar(x, d);

The second function, AutoRadarUKF, is the same core code but designed to be compatible with
the UKF. We could have used AutoRadar, but this is more convenient.

%% AUTORADARUKF - radar model for the UKF
%% Form:
% y = AutoRadarUKF(x, d)
%
%% Description
% Automotive (2D) radar model for use with UKF.
%

function y = AutoRadarUKF(x, d)

s = sin(d.theta);
c = cos(d.theta);

272

CHAPTER 12 AUTONOMOUS DRIVING

cIToC = [c s;-s c];
dR = cIToC*x(1:2);
dV = cIToC*x(3:4);

rng = sqrt(dR'*dR);

Even though we are using radar as our sensor, there is no reason why you couldn’t use a camera, laser
rangefinder, or sonar instead. The limitation on the algorithms and software provided in this book is that
it will only handle one sensor. You can get software from Princeton Satellite Systems that expands this
to multiple sensors, for example, for a car with radar and cameras. Figure 12.1 shows the internal radar
demo. The target car is weaving in front of the radar. It is receding at a steady velocity, but the weave
introduces a time-varying range rate.

Figure 12.1: Built-in radar demo. The target is weaving in front of the radar.

273

CHAPTER 12 AUTONOMOUS DRIVING

12.2 Automobile Autonomous Passing Control
12.2.1 Problem
In order to have something interesting for our radar to measure, we need our cars to perform some
maneuvers. We will develop an algorithm for a car to change lanes.

12.2.2 Solution
The cars are driven by steering controllers that execute basic automobile maneuvers. The throttle (ac-
celerator pedal) and steering angle can be controlled. Multiple maneuvers can be chained together. This
provides a challenging test for the multiple-hypothesis testing (MHT) system. The first function is for
autonomous passing and the second performs the lane change.

12.2.3 How It Works
The AutomobilePassing implements passing control by pointing the wheels at the target. It gener-
ates a steering angle demand and torque demand. Demand is what we want the steering to do. In a real
automobile the hardware will try and meet the demand, but there will be a time lag before the wheel
angle or motor torque meets the demand. In many cases, you are passing the demand to another control
system that will try and meet the demand.

The state is defined by the passState variable. Prior to passing, the passState is 0. During the
passing, it is 1. When it returns to its original lane, the state is set to 0.

%% AUTOMOBILEPASSING - Automobile passing control
%% Form:
% passer = AutomobilePassing(passer, passee, dY, dV, dX, gain)
%
%% Description
% Implements passing control by pointing the wheels at the target.
% Generates a steering angle demand and torque demand.
%
% Prior to passing the passState is 0. During the passing it is 1.
% When it returns to its original lane the state is set to 0.
%
%% Inputs
% passer (1,1) Car data structure
% .mass (1,1) Mass (kg)
% .delta (1,1) Steering angle (rad)
% .r (2,4) Position of wheels (m)
% .cD (1,1) Drag coefficient
% .cF (1,1) Friction coefficient
% .torque (1,1) Motor torque (Nm)
% .area (1,1) Frontal area for drag (mˆ2)
% .x (6,1) [x;y;vX;vZ;theta;omega]
% .errOld (1,1) Old position error
% .passState (1,1) State of passing maneuver
% passee (1,1) Car data structure
% dY (1,1) Relative position in y
% dV (1,1) Relative velocity in x
% dX (1,1) Relative position in x
% gain (1,3) Gains [position velocity position derivative]

274

CHAPTER 12 AUTONOMOUS DRIVING

%
%% Outputs
% passer (1,1) Car data structure with updated fields:
% .passState
% .delta
% .errOld
% .torque

function passer = AutomobilePassing(passer, passee, dY, dV, dX, gain)

% Default gains
if(nargin < 6)

gain = [0.05 80 120];
end

% Lead the target unless the passing car is in front
if(passee.x(1) + dX > passer.x(1))

xTarget = passee.x(1) + dX;
else

xTarget = passer.x(1) + dX;
end

% This causes the passing car to cut in front of the car being passed
if(passer(1).passState == 0)

if(passer.x(1) > passee.x(1) + 2*dX)
dY = 0;
passer(1).passState = 1;

end
else

dY = 0;
end

% Control calculation
target = [xTarget;passee.x(2) + dY];
theta = passer.x(5);
dR = target - passer.x(1:2);
angle = atan2(dR(2),dR(1));
err = angle - theta;
passer.delta = gain(1)*(err + gain(3)*(err - passer.errOld));
passer.errOld = err;
passer.torque = gain(2)*(passee.x(3) + dV - passer.x(3));

The second function performs a lane change. It implements lane change control by pointing the
wheels at the target. The function generates a steering angle demand and a torque demand.

function passer = AutomobileLaneChange(passer, dX, y, v, gain)

% Default gains
if(nargin < 5)

gain = [0.05 80 120];
end

275

CHAPTER 12 AUTONOMOUS DRIVING

% Lead the target unless the passing car is in front
xTarget = passer.x(1) + dX;

% Control calculation
target = [xTarget;y];
theta = passer.x(5);
dR = target - passer.x(1:2);
angle = atan2(dR(2),dR(1));
err = angle - theta;
passer.delta = gain(1)*(err + gain(3)*(err - passer.errOld));

12.3 Automobile Dynamics
12.3.1 Problem
We need to model the car dynamics. We will limit this to a planar model in two dimensions. We are
modeling the location of the car in x/y and the angle of the wheels which allows the car to change
direction.

12.3.2 How It Works
Much like with the radar we will need two functions for the dynamics of the automobile. RHSAutomobile
is used by the simulation and RHSAutomobileXY by the Kalman filter. RHSAutomobile has the full
dynamic model including the engine and steering model. Aerodynamic drag, rolling resistance, and side
force resistance (the car doesn’t slide sideways without resistance) are modeled. RHSAutomobile
handles multiple automobiles. An alternative would be to have a one-automobile function and call
RungeKutta once for each automobile. The latter approach works in all cases, except when you want
to model collisions. In many types of collisions two cars collide and then stick, effectively becoming a
single car. A real tracking system would need to handle this situation.

Each vehicle has six states. They are

1. x-position

2. y-position

3. x-velocity

4. y-velocity

5. Angle about vertical

6. Angular rate about vertical

276

CHAPTER 12 AUTONOMOUS DRIVING

Figure 12.2: Planar automobile dynamical model.

The velocity derivatives are driven by the forces and the angular rate derivative by the torques.
The planar dynamics model is illustrated in Figure 12.2 [7]. Unlike the reference we constrain the

rear wheels to be fixed and the angles for the front wheels to be the same.
The dynamical equations are written in the rotating frame.

m(v̇x−ωvy) =
4

∑
k=1

Fkx −qCDxAxux (12.5)

m(v̇y+ωvx) =
4

∑
k=1

Fky −qCDyAyuy (12.6)

Iω̇ =
4

∑
k=1

r×k Fk (12.7)

where the dynamic pressure is

q=
1
2

ρ |v|2 (12.8)

277

CHAPTER 12 AUTONOMOUS DRIVING

and

v=

[
vx
vy

]
(12.9)

The unit vector is

u=

[
vx
vy

]

|v| (12.10)

Figure 12.3 shows the wheel force and torque. The normal force is mg, where g is the acceleration of
gravity. The force at the tire contact point (where the tire touches the road) is

Figure 12.3:Wheel force and torque.

T

FT

FN

Ftk =

[
T/ρ −Fr
−Fc

]
(12.11)

where Ff is the rolling friction and is
Fr = f0+K1v

2
tx (12.12)

where vtx is the x-velocity in the tire frame. For front wheel drive cars the torque, T , is zero for the rear
wheels. The contact friction is

Fc = μcmg
vty
|vt |

(12.13)

The velocity term ensures that the friction force does not cause limit cycling.
The transformation from tire to body frame is

c=

[
cosδ −sinδ
sinδ cosδ

]
(12.14)

so that
Fk = cFtk (12.15)

vt = cT
[

vx
vy

]
(12.16)

The kinematic equations are
θ̇ = ω (12.17)

278

CHAPTER 12 AUTONOMOUS DRIVING

and

V =

[
cosθ −sinθ
sinθ cosθ

]
v (12.18)

12.3.3 Solution
The RHSAutomobile function is shown below.

function xDot = RHSAutomobile(˜, x, d)

% Constants
g = 9.806; % Acceleration of gravity (m/sˆ2)
n = length(x);
nS = 6; % Number of states
xDot = zeros(n,1);
nAuto = n/nS;

j = 1;
% State [j j+1 j+2 j+3 j+4 j+5]
% x y vX vY theta omega
for k = 1:nAuto

vX = x(j+2,1);
vY = x(j+3,1);
theta = x(j+4,1);
omega = x(j+5,1);

% Car angle
c = cos(theta);
s = sin(theta);

% Inertial frame
v = [c -s;s c]*[vX;vY];

delta = d.car(k).delta;
c = cos(delta);
s = sin(delta);
mCToT = [c s;-s c];

% Find the rolling resistance of the tires
vTire = mCToT*[vX;vY];
f0 = d.car(k).fRR(1);
K1 = d.car(k).fRR(2);

fRollingF = f0 + K1*vTire(1)ˆ2;
fRollingR = f0 + K1*vXˆ2;

% This is the side force friction
fFriction = d.car(k).cF*d.car(k).mass*g;
fT = d.car(k).radiusTire*d.car(k).torque;

fF = [fT - fRollingF;-vTire(2)*fFriction];
fR = [- fRollingR;-vY *fFriction];

279

CHAPTER 12 AUTONOMOUS DRIVING

% Tire forces
f1 = mCToT'*fF;
f2 = f1;
f3 = fR;
f4 = f3;

% Aerodynamic drag
vSq = vXˆ2 + vYˆ2;
vMag = sqrt(vSq);
q = 0.5*1.225*vSq;
fDrag = q*[d.car(k).cDF*d.car(k).areaF*vX;...

d.car(k).cDS*d.car(k).areaS*vY]/vMag;

% Force summations
f = f1 + f2 + f3 + f4 - fDrag;

% Torque
T = Cross2D(d.car(k).r(:,1), f1) + Cross2D(d.car(k).r(:,2),

f2) + ...
Cross2D(d.car(k).r(:,3), f3) + Cross2D(d.car(k).r(:,4),

f4);

% Right hand side
xDot(j, 1) = v(1);
xDot(j+1,1) = v(2);
xDot(j+2,1) = f(1)/d.car(k).mass + omega*vY;
xDot(j+3,1) = f(2)/d.car(k).mass - omega*vX;
xDot(j+4,1) = omega;
xDot(j+5,1) = T/d.car(k).inr;

j = j + nS;
end

function c = Cross2D(a, b)
%% Cross2D
c = a(1)*b(2) - a(2)*b(1);

The Kalman filter’s right-hand side is just the differential equations

ẋ = vx (12.19)

ẏ = vy (12.20)

v̇x = 0 (12.21)

v̇y = 0 (12.22)

The dot means time derivative or rate of change with time. These are the state equations for the
automobile. This model says that the position change with time is proportional to the velocity. It also says
the velocity is constant. Information about velocity changes will come solely from the measurements.
We also don’t model the angle or angular rate. This is because we aren’t getting information about it
from the radar. However, you might try including it!

The RHSAutomobileXY function is shown below; it is only two lines of code!

280

CHAPTER 12 AUTONOMOUS DRIVING

function xDot = RHSAutomobileXY(˜, x, ˜)

xDot = [x(3:4);0;0];

12.4 Automobile Simulation and the Kalman Filter
12.4.1 Problem
You want to track a car using radar measurements to track an automobile maneuvering around your car.
Cars may appear and disappear at any time. The radar measurement needs to be turned into the position
and velocity of the tracked car. In between radar measurements you want to make your best estimate of
where the automobile will be at a given time.

12.4.2 Solution
The solution is to implement a UKF to take radar measurements and update a dynamical model of the
tracked automobile.

12.4.3 How It Works
The demonstration simulation is the same simulation used to demonstrate the multiple-hypothesis system
tracking. This simulation just demonstrates the Kalman filter. Since the Kalman filter is the core of the
package, it is important that it work well before adding the measurement assignment part.

MHTDistanceUKF finds the MHT distance for use in gating computations using the UKF. The
measurement function is of the form h(x,d), where d is the UKF data structure. MHTDistanceUKF
uses sigma points. The code is similar to UKFUpdate. As the uncertainty gets smaller, the residual
must be smaller to remain within the gate.

function [k, del] = MHTDistanceUKF(d)

% Get the sigma points
pS = d.c*chol(d.p)';
nS = length(d.m);
nSig = 2*nS + 1;
mM = repmat(d.m,1,nSig);
if(length(d.m) == 1)

mM = mM';
end

x = mM + [zeros(nS,1) pS -pS];

[y, r] = Measurement(x, d);
mu = y*d.wM;
b = y*d.w*y' + r;
del = d.y - mu;
k = del'*(b\del);

function [y, r] = Measurement(x, d)
%% Measurement from the sigma points

nSigma = size(x,2);

281

CHAPTER 12 AUTONOMOUS DRIVING

lR = length(d.r);
y = zeros(lR,nSigma);
r = d.r;
iR = 1:lR;

for j = 1:nSigma
f = feval(d.hFun, x(:,j), d.hData);
y(iR,j) = f;
r(iR,iR) = d.r;

The simulation UKFAutomobileDemo uses a car data structure to contain all of the car infor-
mation. A MATLAB function AutomobileInitialize takes parameter pairs and builds the data
structure. This is a lot cleaner than assigning the individual fields in your script. It will return a default
data structure if nothing is entered as an argument.

The first part of the demo, shown in the following listing, is the automobile simulation. It generates
the measurements of the automobile positions to be used by the Kalman filter.

%% Initialize

% Set the seed for the random number generators.
% If the seed is not set each run will be different.
seed = 45198;
rng(seed);

% Car control
laneChange = 1;

% Clear the data structure
d = struct;

% Car 1 has the radar
d.car(1) = AutomobileInitialize(...

'mass', 1513,...
'position tires', [1.17 1.17 -1.68 -1.68; -0.77 0.77 -0.77

0.77], ...
'frontal drag coefficient', 0.25, ...
'side drag coefficient', 0.5, ...
'tire friction coefficient', 0.01, ...
'tire radius', 0.4572, ...
'engine torque', 0.4572*200, ...
'rotational inertia', 2443.26, ...
'rolling resistance coefficients', [0.013 6.5e-6], ...
'height automobile', 2/0.77, ...
'side and frontal automobile dimensions', [1.17+1.68 2*0.77]);

% Make the other car identical
d.car(2) = d.car(1);
nAuto = length(d.car);
% Velocity set points for the cars
vSet = [12 13];

% Time step setup
dT = 0.1;

282

CHAPTER 12 AUTONOMOUS DRIVING

tEnd = 20*60;
tLaneChange = 10*60;
tEndPassing = 6*60;
n = ceil(tEnd/dT);

% Car initial states
x = [140; 0;12;0;0;0;...

0; 0;11;0;0;0];

% Radar - the radar model has a field of view and maximum range
% Range drop off or S/N is not modeled
m = length(x)-1;
dRadar.kR = [7:6:m; 8:6:m]; % State position indices
dRadar.kV = [9:6:m;10:6:m]; % State velocity indices
dRadar.kT = 11:6:m; % State yaw angle indices
dRadar.noise = 0.1*[0.02;0.001;0.001]; % [range; range rate; azimuth]
dRadar.fOV = pi/4; % Field of view
dRadar.maxRange = inf;
dRadar.noLimits = 0; % Limits are checked (fov and range)

% Plotting
yP = zeros(3*(nAuto-1),n);
vP = zeros(nAuto-1,n);

xP = zeros(length(x)+2*nAuto,n);
s = 1:6*nAuto;

%% Simulate
t = (0:(n-1))*dT;
fprintf(1,'\nRunning the simulation...');
for k = 1:n

% Plotting
xP(s,k) = x;
j = s(end)+1;

for i = 1:nAuto
p = 6*i-5;
d.car(i).x = x(p:p+5);
xP(j:j+1,k) = [d.car(i).delta;d.car(i).torque];
j = j + 2;

end

% Get radar measurements
dRadar.theta = d.car(1).x(5);
dRadar.t = t(k);
dRadar.xR = x(1:2);
dRadar.vR = x(3:4);
[yP(:,k), vP(:,k)] = AutoRadar(x, dRadar);

% Implement Control

283

CHAPTER 12 AUTONOMOUS DRIVING

% For all but the passing car control the velocity
d.car(1).torque = -10*(d.car(1).x(3) - vSet(1));

% The active car
if(t(k) < tEndPassing)

d.car(2) = AutomobilePassing(d.car(2), d.car(1), 3, 1.3, 10
);

elseif (t(k) > tLaneChange && laneChange)
d.car(2) = AutomobileLaneChange(d.car(2), 10, 3, 12);

else
d.car(2).torque = -10*(d.car(2).x(3) - vSet(2));

end

% Integrate
x = RungeKutta(@RHSAutomobile, 0, x, dT, d);

end
fprintf(1,'DONE.\n');

% The state of the radar host car
xRadar = xP(1:6,:);

% Plot the simulation results
NewFigure('Auto')
kX = 1:6:length(x);
kY = 2:6:length(x);
c = 'bgrcmyk';
j = floor(linspace(1,n,20));
for k = 1:nAuto

plot(xP(kX(k),j),xP(kY(k),j),[c(k) '.']);
hold on

end
legend('Auto 1','Auto 2');
for k = 1:nAuto

plot(xP(kX(k),:),xP(kY(k),:),c(k));
end
xlabel('x (m)');
ylabel('y (m)');
set(gca,'ylim',[-5 5]);
grid

The second part of the demo, shown in this listing, processes the measurements in the UKF to gen-
erate the estimates of the automobile track.

%% Implement UKF

% Covariances
r0 = diag(dRadar.noise.ˆ2); % Measurement 1-sigma
q0 = [1e-7;1e-7;.1;.1]; % The baseline plant covariance diagonal
p0 = [5;0.4;1;0.01].ˆ2; % Initial state covariance matrix

diagonal

% Each step is one scan
ukf = KFInitialize('ukf','f',@RHSAutomobileXY,'alpha',1,...

284

CHAPTER 12 AUTONOMOUS DRIVING

'kappa',0,'beta',2,'dT',dT,'fData',struct('f',0),...
'p',diag(p0),'q',diag(q0),'x',[0;0;0;0],'hData',struct('

theta',0),...
'hfun',@AutoRadarUKF,'m',[0;0;0;0],'r',r0);

ukf = UKFWeight(ukf);

% Size arrays
k1 = find(vP > 0);
k1 = k1(1);

% Limit to when the radar is tracking
n = n - k1 + 1;
yP = yP(:,k1:end);
xP = xP(:,k1:end);
pUKF = zeros(4,n);
xUKF = zeros(4,n);
dMHTU = zeros(1,n);
t = (0:(n-1))*dT;

for k = 1:n
% Prediction step
ukf.t = t(k);
ukf = UKFPredict(ukf);

% Update step
ukf.y = yP(:,k);
ukf = UKFUpdate(ukf);

% Compute the MHT distance
dMHTU(1,k) = MHTDistanceUKF(ukf);

% Store for plotting
pUKF(:,k) = diag(ukf.p);
xUKF(:,k) = ukf.m;

end

% Transform the velocities into the inertial frame
for k = 1:n

c = cos(xP(5,k));
s = sin(xP(5,k));
cCarToI = [c -s;s c];
xP(3:4,k) = cCarToI*xP(3:4,k);

c = cos(xP(11,k));
s = sin(xP(11,k));

cCarToI = [c -s;s c];
xP(9:10,k) = cCarToI*xP(9:10,k);

end

% Relative position
dX = xP(7:10,:) - xP(1:4,:);

285

CHAPTER 12 AUTONOMOUS DRIVING

%% Plotting
[t,tL] = TimeLabel(t);

% Plot just select states
k = [1:4 7:10];
yL = {'p_x' 'p_y' 'p_{v_x}' 'p_{v_y}'};
pS = {[1 5] [2 6] [3 7] [4 8]};

PlotSet(t, pUKF, 'x label', tL,'y label', yL,'figure title', '
Covariance', 'plot title', 'Covariance');

PlotSet(t, [xUKF;dX], 'x label', tL,'y label',{'x' 'y' 'v_x' 'v_y'
},...

'plot title','UKF State: Blue is UKF, Green is Truth',
'figure title','UKF State','plot set', pS);

PlotSet(t, dMHTU, 'x label', tL,'y label','d (m)', 'plot title','MHT
Distance UKF', 'figure title','MHT Distance UKF','plot type','ylog');

The results of the script are shown in Figure 12.4, Figure 12.5, and Figure 12.6.

Figure 12.4: Automobile trajectories.

286

CHAPTER 12 AUTONOMOUS DRIVING

Figure 12.5: The true states and UKF estimated states.

287

CHAPTER 12 AUTONOMOUS DRIVING

Figure 12.6: The MHT distance between the automobiles during the simulation. Notice the spike in dis-
tance when the automobile maneuver starts.

12.5 Perform MHT on the Radar Data
12.5.1 Problem
You want to use hypothesis testing to track multiple cars. You need to take measurements returned by
the radar and assign them methodically to the state histories, that is, position and velocity histories, of
the automobiles. The radar doesn’t know one car from the other so you need a methodical and repeatable
way to assign radar pings to tracks.

12.5.2 Solution
The solution is to implement track-oriented MHT. This system will learn the trajectories of all cars that
are visible to the radar system.

Figure 12.7 shows the general tracking problem. Two scans of data are shown. When the first scan
is done there are two tracks. The uncertainty ellipsoids are shown and they are based on all previous
information. In the k−1 scan three measurements are observed. 1 and 3 are within the ellipsoids of the
two tracks but 2 is in both. It may be a measurement of either of the tracks or a spurious measurement. In
scan k four measurements are taken. Only measurement 4 is in one of the uncertainty ellipsoids. 3 might
be interpreted as spurious, but it is actually caused by a new track from a third vehicle that separates
from the blue track. 1 is outside the red ellipsoid but is actually a good measurement of the red track
and (if correctly interpreted) indicates that the model is erroneous. 4 is a good measurement of the blue

288

CHAPTER 12 AUTONOMOUS DRIVING

Figure 12.7: Tracking problem.

Uncertainty Covariance Ellipsoid

2

4 New Track

1
3

k

k-1
2

1
3

4 Measurement

Actual Tracks

track and indicates that the model is valid. The illustration shows how the tracking system should behave
but without the tracks it would be difficult to interpret the measurements. A measurement can be valid,
spurious, or a new track.

We define a contact as an observation where the signal-to-noise ratio is above a certain threshold. The
observation then constitutes a measurement. Low signal-to-noise ratio observations can happen in both
optical and radar systems. Thresholding reduces the number of observations that need to be associated
with tracks but may lose valid data. An alternative is to treat all observations as contact but adjust the
measurement error accordingly.

Valid measurements must then be assigned to tracks. An ideal tracking system would be able to
categorize each measurement accurately and then assign them to the correct track. The system must also
be able to identify new tracks and remove tracks that no longer exist.

If we were confident that we were only tracking one vehicle, all of the data might be incorporated
into the state estimate. An alternative is to incorporate only the data within the covariance ellipsoids
and treat the remainders as outliers. If the latter strategy were taken, it would be sensible to remember
that data in case future measurements also were “outliers,” in which case the filter might go back and
incorporate different sets of outliers into the solution. This could easily happen if the model were invalid,
for example, if the vehicle, which had been coasting, suddenly began maneuvering and the filter model
did not allow for maneuvers.

In classical multiple-target tracking [6], the problem is divided into two steps, association and esti-
mation. Step 1 associates contacts with targets and step 2 estimates each target’s state. Complications
arise when there is more than one reasonable way to associate contacts with targets. The MHT approach
is to form alternative hypotheses to explain the source of the observations. Each hypothesis assigns ob-
servations to targets or false alarms.

289

CHAPTER 12 AUTONOMOUS DRIVING

There are two approaches to MHT [3]. The first, following Reid [5], operates within a structure in
which hypotheses are continually maintained and updated as observation data are received. In the second,
the track-oriented approach to MHT, tracks are initiated, updated, and scored before being formed into
hypotheses. The scoring process consists of comparing the likelihood that the track represents a true
target versus the likelihood that it is a collation of false alarms. Thus, unlikely tracks can be deleted
before the next stage in which tracks are formed into hypotheses.

The track-oriented approach recomputes the hypotheses using the newly updated tracks after each
scan of data is received. Rather than maintaining, and expanding, hypotheses from scan to scan, the
track-oriented approach discards the hypotheses formed on scan k− 1. The tracks that survive pruning
are predicted to the next scan k where new tracks are formed, using the new observations, and reformed
into hypotheses. Except for the necessity to delete some tracks based upon low probability or N-scan
pruning, no information is lost because the track scores, which are maintained, contain all the relevant
statistical data. MHT terms are defined in Table 12.1.

Table 12.1:MHT Terms

Term Definition
Clutter Transient objects of no interest to the tracking system
Cluster A collection of tracks that are linked by common observations
Family A set of tracks with a common root node. At most one track per family can be

included in a hypothesis. A family can represent at most one target
Hypothesis A set of tracks that do not share any common observations
N-Scan Pruning Using the track scores from the last N scans of data to prune tracks. The count

starts from a root node. When the tracks are pruned, a new root node is established
Observation A measurement that indicates the presence of an object. The observation may be

of a target or be spurious
Pruning Removal of low-score tracks
Root Node An established track to which observations can be attached and which may spawn

additional tracks
Scan A set of data taken simultaneously
Target An object being tracked
Trajectory The path of a target
Track A trajectory that is propagated
Track Branch A track in a family that represents a different data association hypothesis. Only

one branch can be correct
Track Score The log-likelihood ratio for a track

Track scoring is done using log-likelihood ratios:

L(K) = log[LR(K)] =
K

∑
k=1

[LLRK(k)+LLRS(k)]+ log[L0] (12.23)

where the subscript K denotes kinematic and the subscript S denotes signal. It is assumed that the two
are statistically independent.

L0 =
P0(H1)

P0(H0)
(12.24)

where H1 and H0 are the true target and false alarm hypotheses. log is the natural logarithm. The likeli-
hood ratio for the kinematic data is the probability that the data are a result of the true target divided by
the probability that the data are from a false alarm:

290

CHAPTER 12 AUTONOMOUS DRIVING

LRK =
p(DK |H1)

p(DK |H0)
=

e−d2/2/((2π)M/2
√

|S|
1/VC

(12.25)

where M is the measurement dimension, VC is the measurement volume, S= HPTT +R is the measure-
ment residual covariance matrix, and d2 = yT S−1y is the normalized statistical distance for the measure-
ment defined by the residual y and the covariance matrix S. The numerator is the multivariate Gaussian.

The following are the rules for each measurement:

• Each measurement creates a new track.

• Each measurement in each gate updates the existing track. If there is more than one measurement
in a gate, the existing track is duplicated with the new measurement.

• All existing tracks are updated with a “missed” measurement, creating a new track.

Figure 12.8 gives an example. There are two tracks and three measurements. All three measurements
are in the gate for track 1, but only one is in the gate for track 2. Each measurement produces a new
track. The three measurements produce three tracks based on track 1 and the one measurement produces
one track based on track 2. Each track also spawns a new track assuming that there was no measurement
for the track. Thus, in this case three measurements and two tracks result in nine tracks. Tracks 7–9 are
initiated based only on the measurement, which may not be enough information to initiate the full state
vector. If this is the case, there would be an infinite number of tracks associated with each measurement,
not just one new track. If we have a radar measurement we have azimuth, elevation, range, and range
rate. This gives all position states and one velocity state.

Figure 12.8:Measurement and gates. M0 is an “absent” measurement.

291

CHAPTER 12 AUTONOMOUS DRIVING

12.5.3 How It Works
Track management is done by MHTTrackMgmt. This implements track-oriented MHT. It creates new
tracks each scan. A new track is created

1. For each measurement

2. For any track which has more than one measurement in its gate

3. For each existing track with a ”null” measurement

Tracks are pruned to eliminate those of low probability and find the hypothesis which includes consistent
tracks. Consistent tracks do not share any measurements.

This is typically used in a loop in which each step has new measurements, known as “scans.” Scan is
radar terminology for a rotating antenna beam. A scan is a set of sensor data taken at the same time.

The simulation can go in a loop to generate y or you can run the simulation separately and store the
measurements in y. This can be helpful when you are debugging your MHT code.

For real-time systems y would be read in from your sensors. The MHT code would update every
time you received new measurements. The code snippet below is from the header of MHTTrackMgmt,
showing the overall approach to implementation.

zScan = [];

for k = 1:n

zScan = AddScan(y(:,k), [], [], [], zScan) ;

[b, trk, sol, hyp] = MHTTrackMgmt(b, trk, zScan, trkData, k, t);

MHTGUI(trk,sol);

for j = 1:length(trk)
trkData.fScanToTrackData.v = myData

end

if(˜isempty(zScan) && makePlots)
TOMHTTreeAnimation('update', trk);

end

t = t + dT;

end

Reference [1] provides good background reading, but the code in this function is not based on the
reference. Other good references are books and papers by Blackman including [2] and [4].

%% MHTTrackMgmt - manages tracks
%
%% Form:
% [b, trk, sol, hyp] = MHTTrackMgmt(b, trk, zScan, d, scan, t)
%
%% Description
% Manage Track Oriented Multiple Hypothesis Testing tracks.

292

CHAPTER 12 AUTONOMOUS DRIVING

%
% Performs track reduction and track pruning.
%
% It creates new tracks each scan. A new track is created
% - for each measurement
% - for any track which has more than one measurement in its gate
% - for each existing track with a "null" measurement.
%
% Tracks are pruned to eliminate those of low probability and find the
% hypothesis which includes consistent tracks. Consistent tracks do
% not share any measurements.
%
% This is typically used in a loop in which each step has new
% measurements, known as "scans". Scan is radar terminology for a
% rotating antenna beam. A scan is a set of sensor data taken at the
% ame time.
%
% The simulation can go in ths loop to generate y or you can run the
% simulation separately and store the measurements in y. This can be
% helpful when you are debugging your MHT code.
%
% For real time systems y would be read in from your sensors. The MHT
% code would update every time you received new measurements.
%
% zScan = [];
%
% for k = 1:n
%
% zScan = AddScan(y(:,k), [], [], [], zScan) ;
%
% [b, trk, sol, hyp] = MHTTrackMgmt(b, trk, zScan, trkData, k, t);
%
% MHTGUI(trk,sol);
%
% for j = 1:length(trk)
% trkData.fScanToTrackData.v = myData
% end
%
% if(˜isempty(zScan) && makePlots)
% TOMHTTreeAnimation('update', trk);
% end
%
% t = t + dT;
%
% end
%
% The reference provides good background reading but the code in this
% function is not based on the reference. Other good references are
% books and papers by Blackman.
%
%% Inputs
% b (m,n) [scans, tracks]

293

CHAPTER 12 AUTONOMOUS DRIVING

% trk (:) Track data structure
% zScan (1,:) Scan data structure
% d (1,1) Track management parameters
% scan (1,1) The scan id
% t (1,1) Time
%
%% Outputs
% b (m,1) [scans, tracks]
% trk (:) Track data structure
% sol (.) Solution data structure from TOMHTAssignment
% hyp (:) Hypotheses
%
%% Reference
% A. Amditis1, G. Thomaidis1, P. Maroudis, P. Lytrivis1 and
% G. Karaseitanidis1, "Multiple Hypothesis Tracking
% Implementation," www.intechopen.com.

function [b, trk, sol, hyp] = MHTTrackMgmt(b, trk, zScan, d, scan, t)

% Warn the user that this function does not have a demo
if(nargin < 1)

disp('Error: 6 inputs are required');
return;

end

MLog('add',sprintf('============= SCAN %d ==============',scan),scan);

% Add time to the filter data structure
for j = 1:length(trk)

trk(j).filter.t = t;
end

% Remove tracks with an old scan history
earliestScanToKeep = scan-d.nScan;
keep = zeros(1,length(trk));
for j=1:length(trk);

if(isempty(trk(j).scanHist) || max(trk(j).scanHist)>=earliestScanToKeep)
keep(j) = 1;

end
end
if any(˜keep)

txt = sprintf('DELETING %d tracks with old scan histories.\n',length(find
(˜keep)));

MLog('add',txt,scan);
end
trk = trk(find(keep));
nTrk = length(trk);

% Remove old scanHist and measHist entries
for j=1:nTrk

k = find(trk(j).scanHist<earliestScanToKeep);
if(˜isempty(k))

294

CHAPTER 12 AUTONOMOUS DRIVING

trk(j).measHist(k) = [];
trk(j).scanHist(k) = [];

end
end

% Above removal of old entries could result in duplicate tracks
%--
dup = CheckForDuplicateTracks(trk, d.removeDuplicateTracksAcrossAllTrees);
trk = RemoveDuplicateTracks(trk, dup, scan);
nTrk = length(trk);

% Perform the Kalman Filter prediction step
%--
for j = 1:nTrk

trk(j).filter = feval(d.predict, trk(j).filter);
trk(j).mP = trk(j).filter.m;
trk(j).pP = trk(j).filter.p;

trk(j).m = trk(j).filter.m;
trk(j).p = trk(j).filter.p;

end

% Track assignment
% 1. Each measurement creates a new track
% 2. One new track is created by adding a null measurement to each existing
% track
% 3. Each measurement within a track's gate is added to a track. If there
% are more than 1 measurement for a track create a new track.
%
% Assign to a track. If one measurement is within the gate we just assign
% it. If more than one we need to create a new track
nNew = 0;
newTrack = [];
newScan = [];
newMeas = [];
nS = length(zScan);

maxID = 0;
maxTag = 0;
for j = 1:nTrk

trk(j).d = zeros(1,nS);
trk(j).new = [];

for i = 1:nS
trk(j).filter.x = trk(j).m;
trk(j).filter.y = zScan(i);
trk(j).d(i) = feval(d.fDistance, trk(j).filter);

end
trk(j).gate = trk(j).d < d.gate;
hits = find(trk(j).gate==1);
trk(j).meas = [];
lHits = length(hits);
if(lHits > 0)

295

CHAPTER 12 AUTONOMOUS DRIVING

if(lHits > 1)
for k = 1:lHits-1

newTrack(end+1) = j;
newScan(end+1) = trk(j).gate(hits(k+1));
newMeas(end+1) = hits(k+1);

end
nNew = nNew + lHits - 1;

end
trk(j).meas = hits(1);
trk(j).measHist(end+1) = hits(1);
trk(j).scanHist(end+1) = scan;
if(trk(j).scan0 == 0)

trk(j).scan0 = scan;
end

end
maxID = max(maxID,trk(j).treeID);
maxTag = max(maxTag,trk(j).tag);

end
nextID = maxID+1;
nextTag = maxTag+1;

% Create new tracks assuming that existing tracks had no measurements
%--
nTrk0 = nTrk;
for j = 1:nTrk0

if(˜isempty(trk(j).scanHist) && trk(j).scanHist(end) == scan)

% Add a copy of track "j" to the end with NULL measurement
%---
nTrk = nTrk + 1;
trk(nTrk) = trk(j);
trk(nTrk).meas = [];
trk(nTrk).treeID = trk(nTrk).treeID; % Use the SAME track

tree ID
trk(nTrk).scan0 = scan;
trk(nTrk).tag = nextTag;

nextTag = nextTag + 1; % increment next tag number

% The track we copied already had a measurement appended for this
% scan, so replace these entries in the history
%--
trk(nTrk).measHist(end) = 0;
trk(nTrk).scanHist(end) = scan;

end

end

% Do this to notify us if any duplicate tracks are created
%---

296

CHAPTER 12 AUTONOMOUS DRIVING

dup = CheckForDuplicateTracks(trk);
trk = RemoveDuplicateTracks(trk, dup, scan);

% Add new tracks for existing tracks which had multiple measurements
%---
if(nNew > 0)

nTrk = length(trk);
for k = 1:nNew

j = k + nTrk;
trk(j) = trk(newTrack(k));
trk(j).meas = newMeas(k);
trk(j).treeID = trk(j).treeID;
trk(j).measHist(end) = newMeas(k);
trk(j).scanHist(end) = scan;
trk(j).scan0 = scan;
trk(j).tag = nextTag;

nextTag = nextTag + 1;

end
end

% Do this to notify us if any duplicate tracks are created
dup = CheckForDuplicateTracks(trk);
trk = RemoveDuplicateTracks(trk, dup, scan);
nTrk = length(trk);

% Create a new track for every measurement
for k = 1:nS

nTrk = nTrk + 1;

% Use next track ID
%------------------
trkF = feval(d.fScanToTrack, zScan(i), d.fScanToTrackData

, scan, nextID, nextTag);
if(isempty(trk))

trk = trkF;
else

trk(nTrk) = trkF;
end
trk(nTrk).meas = k;
trk(nTrk).measHist = k;
trk(nTrk).scanHist = scan;
nextID = nextID + 1; % increment next track-tree ID
nextTag = nextTag + 1; % increment next tag number

end

% Exit now if there are no tracks
if(nTrk == 0)

b = [];
hyp = [];
sol = [];

297

CHAPTER 12 AUTONOMOUS DRIVING

return;
end

% Do this to notify us if any duplicate tracks are created
dup = CheckForDuplicateTracks(trk);
trk = RemoveDuplicateTracks(trk, dup, scan);
nTrk = length(trk);

% Remove any tracks that have all NULL measurements
kDel = [];
if(nTrk > 1) % do this to prevent deletion of very first track

for j=1:nTrk
if(˜isempty(trk(j).measHist) && all(trk(j).measHist==0))

kDel = [kDel j];
end

end
if(˜isempty(kDel))

keep = setdiff(1:nTrk,kDel);
trk = trk(keep);

end
nTrk = length(trk);

end

% Compute track scores for each measurement
for j = 1:nTrk

if(˜isempty(trk(j).meas))
i = trk(j).meas;
trk(j).score(scan) = MHTTrackScore(zScan(i), trk(j).filter, d.

pD, d.pFA, d.pH1, d.pH0);
else

trk(j).score(scan) = MHTTrackScore([], trk(j).filter, d.
pD, d.pFA, d.pH1, d.pH0);

end
end

% Find the total score for each track
nTrk = length(trk);
for j = 1:nTrk

if(˜isempty(trk(j).scanHist))
k1 = trk(j).scanHist(1);
k2 = length(trk(j).score);
kk = k1:k2;

if(k1<length(trk(j).score)-d.nScan)
error('The scanHist array spans back too far.')

end

else
kk = 1;

end

298

CHAPTER 12 AUTONOMOUS DRIVING

trk(j).scoreTotal = MHTLLRUpdate(trk(j).score(kk));

% Add a weighted value of the average track score
if(trk(j).scan0 > 0)

kk2 = trk(j).scan0 : length(trk(j).score);
avgScore = min(0,MHTLLRUpdate(trk(j).score(kk2)) / length(kk2));
trk(j).scoreTotal = trk(j).scoreTotal + d.avgScoreHistoryWeight *

avgScore;
end

end

% Update the Kalman Filters
for j = 1:nTrk

if(˜isempty(zScan) && ˜isempty(trk(j).meas))
trk(j).filter.y = zScan(trk(j).meas);
trk(j).filter = feval(d.update, trk(j).filter);
trk(j).m = trk(j).filter.m;
trk(j).p = trk(j).filter.p;
trk(j).mHist(:,end+1) = trk(j).filter.m;
end

end

% Examine the tracks for consistency
duplicateScans = zeros(1,nTrk);
for j=1:nTrk

if(length(unique(trk(j).scanHist)) < length(trk(j).scanHist))
duplicateScans(j)=1;

end
end

% Update the b matrix and delete the oldest scan if necessary
b = MHTTrkToB(trk);

rr = rand(size(b,2),1);
br = b*rr;
if(length(unique(br))<length(br))

MLog('add',sprintf('DUPLICATE TRACKS!!!\n'),scan);
end

% Solve for "M best" hypotheses
sol = TOMHTAssignment(trk, d.mBest);

% prune by keeping only those tracks whose treeID is present in the list of
% "M best" hypotheses
trk0 = trk;
if(d.pruneTracks)

[trk,kept,pruned] = TOMHTPruneTracks(trk, sol, d.hypScanLast);
b = MHTTrkToB(trk);

% Do this to notify us if any duplicate tracks are created
dup = CheckForDuplicateTracks(trk);

299

CHAPTER 12 AUTONOMOUS DRIVING

trk = RemoveDuplicateTracks(trk, dup, scan);

% Make solution data compatible with pruned tracks
if(˜isempty(pruned))

for j=1:length(sol.hypothesis)
for k = 1:length(sol.hypothesis(j).trackIndex)

sol.hypothesis(j).trackIndex(k) = find(sol.hypothesis(j).trackIndex
(k) == kept);

end
end

end

end

if(length(trk)<length(trk0))
txt = sprintf('Pruning: Reduce from %d to %d tracks.\n',length(trk0),

length(trk));
MLog('add',txt,scan);

else
MLog('add',sprintf('Pruning: All tracks survived.\n'),scan);

end

% Form hypotheses
if(scan >= d.hypScanLast + d.hypScanWindow)

hyp = sol.hypothesis(1);
else

hyp = [];
end

function trk = RemoveDuplicateTracks(trk, dup, scan)
%% Remove duplicate tracks

if(˜isempty(dup))
MLog('update',sprintf('DUPLICATE TRACKS: %s\n',mat2str(dup)),scan);
kDup = unique(dup(:,2));
kUnq = setdiff(1:length(trk),kDup);
trk(kDup) = [];
dup2 = CheckForDuplicateTracks(trk);
if(isempty(dup2))

txt = sprintf('Removed %d duplicates, kept tracks: %s\n',length(kDup),
mat2str(kUnq));

MLog('add',txt,scan);
else

error('Still have duplicates. Something is wrong with this pruning.')
end

end

MHTTrackMgmt uses hypothesis forming and track pruning from the following two recipes.

300

CHAPTER 12 AUTONOMOUS DRIVING

12.5.4 Hypothesis Formation

12.5.4.1 Problem
Form hypotheses about tracks.

12.5.4.2 Solution
Formulate as a mixed integer-linear programming (MILP) and solve using GNU Linear Programming
Kit (GLPK).

12.5.4.3 How It Works
Hypotheses are sets of tracks with consistent data, that is, where no measurements are assigned to more
than one track. The track-oriented approach recomputes the hypotheses using the newly updated tracks
after each scan of data is received. Rather than maintaining, and expanding, hypotheses from scan to
scan, the track-oriented approach discards the hypotheses formed on scan k−1. The tracks that survive
pruning are propagated to the next scan k where new tracks are formed, using the new observations, and
reformed into hypotheses. Except for the necessity to delete some tracks based upon low probability, no
information is lost because the track scores, which are maintained, contain all the relevant statistical data.

In MHT, a valid hypothesis is any compatible set of tracks. In order for two or more tracks to be
compatible, they cannot describe the same object, and they cannot share the same measurement at any
of the scans. The task in hypothesis formation is to find one or more combinations of tracks that (1) are
compatible and (2) maximize some performance function.

Before discussing the method of hypothesis formation, it is useful to first consider track formation
and how tracks are associated with unique objects. New tracks may be formed in one of two ways:

1. The new track is based on some existing track, with the addition of a new measurement.

2. The new track is NOT based on any existing tracks; it is based solely on a single new measurement.

Recall that each track is formed as a sequence of measurements across multiple scans. In addition
to the raw measurement history, every track also contains a history of state and covariance data that
is computed from a Kalman filter. When a new measurement is appended to an existing track, we are
spawning a new track that includes all of the original track’s measurements, plus this new measurement.
Therefore, the new track is describing the same object as the original track.

A new measurement can also be used to generate a completely new track that is independent of past
measurements. When this is done, we are effectively saying that the measurement does not describe any
of the objects that are already being tracked. It therefore must correspond to a new or different object.

In this way, each track is given an object ID to distinguish which object it describes. Within the
context of track-tree diagrams, all of the tracks inside the same track-tree have the same object ID. For
example, if at some point there are 10 separate track-trees, this means that 10 separate objects are being
tracked in the MHT system. When a valid hypothesis is formed, it may turn out that only a few of these
objects have compatible tracks.

The hypothesis formation step is formulated as an MILP and solved using GLPK. Each track is
given an aggregate score that reflects the component scores attained from each measurement. The MILP
formulation is constructed to select a set of tracks that add to give the highest score, such that

1. No two tracks have the same object ID.

2. No two tracks have the same measurement index for any scan.

In addition, we extended the formulation with an option to solve for multiple hypotheses, rather than
just one. The algorithm will return the “M best” hypotheses, in descending order of score. This enables
tracks to be preserved from alternate hypotheses that may be very close in score to the best.

301

CHAPTER 12 AUTONOMOUS DRIVING

The following code shows how hypothesis formation is done. GLPK is available for free. Its website
includes installation instructions.

TOMHTAssignment generates hypotheses. The “b” matrix represents a stacked set of track-trees.
Each row is a different path through a track-tree. Each column is a different scan. Values in the matrix
are the index of the measurement for that scan. A valid hypothesis is a combination of rows of b (a
combination of track-tree paths), such that the same measurement is not repeated. The solution vector
“x” is an array with 0s and 1s that selects a set of track-tree paths. The objective is to find the hypothesis
that maximizes the total score.

%% TOMHTASSIGNMENT - generates hypotheses
%
%% Form:
% d = TOMHTAssignment(trk, M, glpkParams);
%
%% Description
% Track oriented MHT assignment. Generates hypotheses.
%
% The "b" matrix represents a stacked set of track-trees.
% Each row is a different path through a track-tree
% Each column is a different scan
% Values in matrix are index of measurement for that scan
%
% A valid hypothesis is a combination of rows of b (a combination of
% track-tree paths), such that the same measurement is not repeated.
%
% Solution vector "x" is 0|1 array that selects a set of track-tree-paths.
%
% Objective is to find the hypothesis that maximizes total score.
%
%
%% Inputs
% trk (.) Data structure array of track information
% From this data we will obtain:
% b (nT,nS) Matrix of measurement IDs across scans
% trackScores (1,nT) Array of total track scores
% treeIDs (1,nT) Array of track ID numbers. A common ID across
% multiple tracks means they are in the same
% track-tree.
% M (1,1) Number of hypotheses to generate.
% glpkParams (.) Data structure with glpk parameters.
%
%% Outputs
% d (.) Data structure with fields:
% .nT Number of tracks
% .nS Number of scans
% .M Number of hypotheses
% .pairs Pairs of hypotheses for score constraints
% .nPairs Number of pairs
% .A Constraint matrix for optimization
% .b Constraint vector for optimization
% .c Cost vector for optimization
% .lb lower bounds on solution vector

302

CHAPTER 12 AUTONOMOUS DRIVING

% .ub upper bounds on solution vector
% .conType Constraint type array
% .varType Variable type array
% .x Solution vector for optimization
% .hypothesis(:) Array of hypothesis data
%
% d.hypothesis(:) Data strcuture array with fields:
% .treeID Vector of track-tree IDs in hypothesis
% .trackIndex Vector of track indices in hypothesis.
% Maps to rows of "b" matrix.
% .tracks Set of tracks in hypothesis. These are
% the selected rows of "b" matrix.
% .trackScores Vector of scores for selected tracks.
% .score Total score for hypothesis.
%
%% References
% Blackman, S. and R. Popoli, "Design and Analysis of Modern
% Tracking Systems," Artech House, 1999.

%% Copyright
% Copyright (c) 2012-2013 Princeton Satellite Systems, Inc.
% All rights reserved.

function d = TOMHTAssignment(trk, M, glpkParams)

%==================================
% --- OPTIONS ---
%
% Prevent tracks with all zeros
% from being selected?
%
preventAllZeroTracks = 0;
%
%
%
% Choose a scoring method:
% log-LR sum of log of likelihood ratios
% LR sum of likelihood ratios
% prob sum of probabilities
%
scoringMethod = 'log-LR';
%
%==================================

% how many solutions to generate?
if(nargin<2)

M = 2;
end

% GLPK parameters
if(nargin<5)

% Searching time limit, in seconds.
% If this value is positive, it is decreased each

303

CHAPTER 12 AUTONOMOUS DRIVING

% time when one simplex iteration has been performed by the
% amount of time spent for the iteration, and reaching zero
% value signals the solver to stop the search. Negative
% value means no time limit.
glpkParams.tmlim = 10;

% Level of messages output by solver routines:
% 0 - No output.
% 1 - Error messages only.
% 2 - Normal output.
% 3 - Full output (includes informational messages).
glpkParams.msglev = 0;

end

% extract "b" matrix
b = MHTTrkToB(trk);

% the track tree IDs
treeIDs = [trk.treeID];

scans = unique([trk.scanHist]);
scan = max(scans);

% the track scores
switch lower(scoringMethod)

case 'log-lr'
% the "scoreTotal" field is the sum of log likelihood ratios
trackScores = [trk.scoreTotal];

case 'lr'
% Redefine scores this way rather than sum of log of each scan score
trackScores = zeros(1,nT);
for j=1:nT

if(˜isempty(trk(j).scanHist))
trackScores(j) = sum(trk(j).score(trk(j).scanHist(1):end));

else
trackScores(j) = sum(trk(j).score);

end
end

case 'prob'
error('Probability scoring not implemented yet.')

end

% remove occurrence of "inf"
kinf = find(isinf(trackScores));
trackScores(kinf) = sign(trackScores(kinf))*1e8;

% remove treeIDs column from b
b = b(:,2:end);

[nT,nS] = size(b);

304

CHAPTER 12 AUTONOMOUS DRIVING

nCon = 0; % number of constraints not known yet. compute below
nVar = nT; % number of variables is equal to total # track-tree-paths

% compute number of constraints
for i=1:nS

% number of measurements taken for this scan
nMeasForThisScan = max(b(:,i));
nCon = nCon + nMeasForThisScan;

end

% Initialize A, b, c
d.A = zeros(nCon,nVar*M);
d.b = zeros(nCon,1);
d.c = zeros(nVar*M,1);
d.conType = char(zeros(1,nCon));
d.varType = char(zeros(1,nVar));
for i=1:M

col0 = (i-1)*nT;
for j=1:nT

d.varType(col0+j) = 'B'; % all binary variables
%d.c(col0+j) = trackProb(j);
d.c(col0+j) = trackScores(j);
%d.c(col0+j) = trackScoresPos(j);

end
end

% coefficients for unique tag generation
%coeff = 2.ˆ[0 : 1 : nT-1];

conIndex = 0;

col0 = 0;

% find set of tracks that have all zeros, if any
bSumCols = sum(b,2);
kAllZeroTracks = find(bSumCols==0);

for mm = 1:M

% for each track-tree ID
treeIDsU = unique(treeIDs);
for i=1:length(treeIDsU)

rows = find(treeIDs==treeIDsU(i));

% for each row of b with this track ID
conIndex = conIndex+1;
for j=rows

d.A(conIndex,col0+j) = 1;
d.b(conIndex) = 1;
d.conType(conIndex) = 'U'; % upper bound: A(conIndex,:)*x <= 1

end
end

% for each scan

305

CHAPTER 12 AUTONOMOUS DRIVING

for i=1:nS

% number of measurements taken for this scan
nMeasForThisScan = max(b(:,i));

% for each measurement (not 0)
for k=1:nMeasForThisScan

% get rows of b matrix with this measurement index
bRowsWithMeasK = find(b(:,i)==k);

conIndex = conIndex+1;

% for each row
for j = bRowsWithMeasK

d.A(conIndex,col0+j) = 1;
d.b(conIndex) = 1;
d.conType(conIndex) = 'U'; % upper bound: A(conIndex,:)*x <= 1

end
end

end

% prevent tracks with all zero measurements from being selected
if(preventAllZeroTracks)

for col = kAllZeroTracks
conIndex = conIndex+1;
d.A(conIndex,col) = 1;
d.b(conIndex) = 0;
d.conType(conIndex) = 'S';

end
end

col0 = col0 + nT;

end

% variable bounds
d.lb = zeros(size(d.c));
d.ub = ones(size(d.c));

% add set of constraints / vars for each pair of solutions
if(M>1)

pairs = nchoosek(1:M,2);
nPairs = size(pairs,1);

for i=1:nPairs
k1 = pairs(i,1);
k2 = pairs(i,2);
xCol1 = (k1-1)*nT+1 : k1*nT;
xCol2 = (k2-1)*nT+1 : k2*nT;

306

CHAPTER 12 AUTONOMOUS DRIVING

% enforce second score to be less than first score
% c1*x1 - c2*x2 >= tol
conIndex = conIndex + 1;
d.A(conIndex,xCol1) = d.c(xCol1);
d.A(conIndex,xCol2) = -d.c(xCol2);
d.b(conIndex) = 10; % must be non-negative and small
d.conType(conIndex) = 'L';

end
else

pairs = [];
nPairs = 0;

end

if(nT>1)

% call glpk to solve for optimal hypotheses
%glpkParams.msglev = 3; % use this for detailed GLPK printout

d.A(abs(d.A)<eps) = 0;
d.b(abs(d.b)<eps) = 0;

[d.x,˜,status] = glpk(d.c,d.A,d.b,d.lb,d.ub,d.conType,d.varType,-1,
glpkParams);

switch status
case 1

MLog('add',sprintf('GLPK: 1: solution is undefined.\n'),scan);
case 2

MLog('add',sprintf('GLPK: 2: solution is feasible.\n'),scan);
case 3

MLog('add',sprintf('GLPK: 3: solution is infeasible.\n'),scan);
case 4

MLog('add',sprintf('GLPK: 4: no feasible solution exists.\n'),scan);
case 5

MLog('add',sprintf('GLPK: 5: solution is optimal.\n'),scan);
case 6

MLog('add',sprintf('GLPK: 6: solution is unbounded.\n'),scan);
otherwise

MLog('add',sprintf('GLPK: %d\n',status),scan);
end

else

d.x = ones(M,1);

end

d.nT = nT;
d.nS = nS;
d.M = M;
d.pairs = pairs;
d.nPairs = nPairs;
d.trackMat = b;

307

CHAPTER 12 AUTONOMOUS DRIVING

for mm=1:M
rows = (mm-1)*nT+1 : mm*nT;
sel = find(d.x(rows));
d.hypothesis(mm).treeID = treeIDs(sel);
d.hypothesis(mm).tracks = b(sel,:);
for j=1:length(sel)

d.hypothesis(mm).meas{j} = trk(sel).measHist;
d.hypothesis(mm).scans{j} = trk(sel).scanHist;

end
d.hypothesis(mm).trackIndex = sel;
d.hypothesis(mm).trackScores = trackScores(sel);
d.hypothesis(mm).score = sum(trackScores(sel));

end

12.5.5 Track Pruning

12.5.5.1 Problem
We need to prune tracks to prevent an explosion of tracks.

12.5.5.2 Solution
Implement N-scan track pruning.

12.5.5.3 How It Works
The N-scan track pruning is carried out at every step using the last n scans of data. We use a pruning
method in which the following tracks are preserved:

• Tracks with the “N” highest scores

• Tracks that are included in the “M best” hypotheses

• Tracks that have both (1) the object ID and (2) the first “P” measurements found in the “M best”
hypotheses

We use the results of hypothesis formation to guide track pruning. The parameters N, M, P can be
tuned to improve performance. The objective with pruning is to reduce the number of tracks as much as
possible while not removing any tracks that should be part of the actual true hypothesis.

The second item listed above is to preserve all tracks included in the “M best” hypotheses. Each of
these is a full path through a track-tree, which is clear. The third item listed above is similar, but less
constrained. Consider one of the tracks in the “M best” hypotheses. We will preserve this full track. In
addition, we will preserve all tracks that stem from scan “P” of this track.

Figure 12.9 provides an example of which tracks in a track-tree might be preserved. The diagram
shows 17 different tracks over 5 scans. The green track represents one of the tracks found in the set of
“M best” hypotheses, from the hypothesis formation step. This track would be preserved. The orange
tracks all stem from the node in this track at scan 2. These would be preserved if we set P= 2 from the
description above. The following code shows how track pruning is done.

308

CHAPTER 12 AUTONOMOUS DRIVING

Figure 12.9: Track pruning example

function [tracksP,keep,prune,d] = TOMHTPruneTracks(tracks, soln, scan0,
opts)

% default value for starting scan index
if(nargin<3)

scan0 = 0;
end

% default algorithm options
if(nargin<4)

opts.nHighScoresToKeep = 5;
opts.nFirstMeasMatch = 3;

end

% increment the # scans to match
opts.nFirstMeasMatch = opts.nFirstMeasMatch + scan0;

% output structure to record which criteria resulted in preservation of
% which tracks
d.bestTrackScores = [];
d.bestHypFullTracks = [];
d.bestHypPartialTracks = [];

309

CHAPTER 12 AUTONOMOUS DRIVING

% number of hypotheses, tracks, scans
nHyp = length(soln.hypothesis);
nTracks = length(tracks);
nScans = size(soln.hypothesis(1).tracks,2);

% must limit # required matching measurements to # scans
if(opts.nFirstMeasMatch > nScans)

opts.nFirstMeasMatch = nScans;
end

% if # high scores to keep equals or exceeds # tracks
% then just return original tracks
if(opts.nHighScoresToKeep > nTracks)

tracksP = tracks;
keep = 1:length(tracks);
prune = [];
d.bestTrackScores = keep;
return

end

% get needed vectors out of trk array
scores = [tracks.scoreTotal];
treeIDs = [tracks.treeID];

% get list of all treeIDs in hypotheses
treeIDsInHyp = [];
for j=1:nHyp

treeIDsInHyp = [treeIDsInHyp, soln.hypothesis(j).treeID];
end
treeIDsInHyp = unique(treeIDsInHyp);

% create a matrix of hypothesis data with ID and tracks
hypMat = [soln.hypothesis(1).treeID', soln.hypothesis(1).tracks];
for j=2:nHyp

for k=1:length(soln.hypothesis(j).treeID)
% if this track ID is not already included,
if(all(soln.hypothesis(j).treeID(k) ˜= hypMat(:,1)))

% then append this row to bottom of matrix
hypMat = [hypMat; ...

soln.hypothesis(j).treeID(k), soln.hypothesis(j).tracks(k,:)];
end

end
end

% Initialize "keep" array to all zeros
keep = zeros(1,nTracks);

% Keep tracks with the "N" highest scores
if(opts.nHighScoresToKeep>0)

[˜,ks] = sort(scores,2,'descend');
index = ks(1:opts.nHighScoresToKeep);

310

CHAPTER 12 AUTONOMOUS DRIVING

keep(index) = 1;

d.bestTrackScores = index(:)';
end

% Keep tracks in the "M best" hypotheses
for j=1:nHyp

index = soln.hypothesis(j).trackIndex;
keep(index) = 1;

d.bestHypFullTracks = index(:)';
end

% If we do not require any measurements to match,
% then include ALL tracks with an ID contained in "M best hypotheses"
if(opts.nFirstMeasMatch == 0)

% This means we include the entire track-tree for those IDs in included
% in the set of best hypotheses.
for k = 1:length(trackIDsInHyp)

index = find(treeIDs == trackIDsInHyp(k));
keep(index) = 1;

d.bestHypPartialTracks = index(:)';
end

% If the # measurements we require to match is equal to # scans, then
% this is equivalent to the set of tracks in the hypothesis solution.

elseif(opts.nFirstMeasMatch == nScans)
% We have already included these tracks, so nothing more to do here.

else
% Otherwise, we have some subset of measurements to match.
% Find the set of tracks that have:
% 1. track ID and
% 2. first "P" measurements
% included in "M best" hypotheses
nTracksInHypSet = size(hypMat,1);
tagMap = rand(opts.nFirstMeasMatch+1,1);
b = MHTTrkToB2(tracks);
trkMat = [trackIDs', b];
trkTag = trkMat(:,1:opts.nFirstMeasMatch+1)*tagMap;
for j=1:nTracksInHypSet

hypTrkTag = hypMat(j,1:opts.nFirstMeasMatch+1)*tagMap;
index = find(trkTag == hypTrkTag);
keep(index) = 1;

d.bestHypPartialTracks = [d.bestHypPartialTracks, index(:)'];
end
d.bestHypPartialTracks = sort(unique(d.bestHypPartialTracks));

end

311

CHAPTER 12 AUTONOMOUS DRIVING

% prune index list is everything not kept
prune = ˜keep;

% switch from logical array to index
keep = find(keep);
prune = find(prune);

12.5.5.4 Simulation
The simulation is for a two-dimensional model of automobile dynamics. The primary car is driving along
a highway at variable speeds. It carries a radar. Many cars pass the primary car, some of which change
lanes from behind the car and cut in front. The MHT system tracks all cars. At the start of the simulation
there are no cars in the radar field of view. One car passes and cuts in front of the radar car. The other
two just pass in their lanes. This is a good test of track initiation.

The radar, covered in the first recipe of the chapter, measures range, range rate, and azimuth in the
radar car frame. The model generates those values directly from the target and tracking cars’ relative
velocity and positions. The radar signal processing is not modeled, but the radar has field-of-view and
range limitations. See AutoRadar.

The cars are driven by steering controllers that execute basic automobile maneuver. The throttle
(accelerator pedal) and steering angle can be controlled. Multiple maneuvers can be chained together.
This provides a challenging test for the MHT system. You can try different maneuvers and add additional
maneuver functions of your own.

The UKFilter described in Chapter 10 is used in this demo since the radar is a highly nonlinear
measurement. The UKF dynamical model, RHSAutomobileXY, is a pair of double integrators in the
inertial frame relative to the radar car. The model accommodates steering and throttle changes by making
the plant covariance, both position and velocity, larger than would be expected by analyzing the relative
accelerations. An alternative would be to use interactive multiple models (IMMs) with a “steering” model
and “acceleration” model. This added complication does not appear to be necessary. A considerable
amount of uncertainty would be retained even with IMMs since a steering model would be limited to one
or two steering angles.

The script implementing the simulation with MHT is MHTAutomobileDemo. There are four cars
in the demo; car 4 will be passing. Figure 12.10 shows the maneuver.

% Set the seed for the random number generators.
% If the seed is not set each run will be different.
seed = 45198;
rng(seed);

% Control screen output
% This demo takes about 4 minutes with the graphics OFF.
% It takes about 10 minutes with the graphics on.
printTrackUpdates = 0; % includes a pause at every MHT step
graphicsOn = 0;
treeAnimationOn = 0;

% Car 1 has the radar

% 'mass' (1,1)
% 'steering angle' (1,1) (rad)
% 'position tires' (2,4)

312

CHAPTER 12 AUTONOMOUS DRIVING

d.car(1) = AutomobileInitialize('mass', 1513,...
'position tires', [1.17 1.17 -1.68

-1.68; -0.77 0.77 -0.77 0.77], ...
'frontal drag coefficient', 0.25, ...
'side drag coefficient', 0.5, ...
'tire friction coefficient', 0.01, ...
'tire radius', 0.4572, ...
'engine torque', 0.4572*200, ...
'rotational inertia', 2443.26, ...
'rolling resistance coefficients', [0.013

6.5e-6], ...
'height automobile', 2/0.77, ...
'side and frontal automobile dimensions',

[1.17+1.68 2*0.77]);

% Make the other cars identical
d.car(2) = d.car(1);
d.car(3) = d.car(1);
d.car(4) = d.car(1);
nAuto = length(d.car);

% Velocity set points for cars 1-3. Car 4 will be passing
vSet = [12 13 14];

% Time step setup
dT = 0.1;
tEnd = 300;
n = ceil(tEnd/dT);

% Car initial state
x = [140; 0;12;0;0;0;...

30; 3;14;0;0;0;...
0;-3;15;0;0;0;...
0; 0;11;0;0;0];

% Radar
m = length(x)-1;
dRadar.kR = [7:6:m;8:6:m];
dRadar.kV = [9:6:m;10:6:m];
dRadar.kT = 11:6:m;
dRadar.noise = [0.1;0.01;0.01]; % [range; range rate; azimuth]
dRadar.fOV = pi/4;
dRadar.maxRange = 800;
dRadar.noLimits = 0;

figure('name','Radar FOV')
range = tan(dRadar.fOV)*5;
fill([x(1) x(1)+range*[1 1]],[x(2) x(2)+5*[1 -1]],'y')
iX = [1 7 13 19];
l = plot([[0;0;0;0] x(iX)]',(x(iX+1)*[1 1])','-');
hold on
for k = 1:length(l)

313

CHAPTER 12 AUTONOMOUS DRIVING

plot(x(iX(k)),x(iX(k)+1)','*','color',get(l(k),'color'));
end
set(gca,'ylim',[-5 5]);
grid
range = tan(dRadar.fOV)*5;
fill([x(1) x(1)+range*[1 1]],[x(2) x(2)+5*[1 -1]],'y')
legend(l,'Auto 1','Auto 2', 'Auto 3', 'Auto 4');
title('Initial Conditions and Radar FOV')

% Plotting
yP = zeros(3*(nAuto-1),n);
vP = zeros(nAuto-1,n);
xP = zeros(length(x)+2*nAuto,n);
s = 1:6*nAuto;

%% Simulate
t = (0:(n-1))*dT;

fprintf(1,'\nRunning the simulation...');
for k = 1:n

% Plotting
xP(s,k) = x;
j = s(end)+1;

for i = 1:nAuto
p = 6*i-5;
d.car(i).x = x(p:p+5);
xP(j:j+1,k) = [d.car(i).delta;d.car(i).torque];
j = j + 2;

end

% Get radar measurements
dRadar.theta = d.car(1).x(5);
dRadar.t = t(k);
dRadar.xR = x(1:2);
dRadar.vR = x(3:4);
[yP(:,k), vP(:,k)] = AutoRadar(x, dRadar);

% Implement Control

% For all but the passing car control the velocity
for j = 1:3

d.car(j).torque = -10*(d.car(j).x(3) - vSet(j));
end

% The passing car
d.car(4) = AutomobilePassing(d.car(4), d.car(1), 3, 1.3, 10);

% Integrate
x = RungeKutta(@RHSAutomobile, 0, x, dT, d);

314

CHAPTER 12 AUTONOMOUS DRIVING

end
fprintf(1,'DONE.\n');

% The state of the radar host car
xRadar = xP(1:6,:);

% Plot the simulation results
figure('name','Auto')
kX = 1:6:length(x);
kY = 2:6:length(x);
c = 'bgrcmyk';
j = floor(linspace(1,n,20));
[t, tL] = TimeLabel(t);
for k = 1:nAuto

plot(xP(kX(k),j),xP(kY(k),j),[c(k) '.']);
hold on

end
legend('Auto 1','Auto 2', 'Auto 3', 'Auto 4');

for k = 1:nAuto
plot(xP(kX(k),:),xP(kY(k),:),c(k));

end
xlabel('x (m)');
ylabel('y (m)');
set(gca,'ylim',[-5 5]);
grid

kV = [19:24 31 32];
yL = {'x (m)' 'y (m)' 'v_x (m/s)' 'v_y (m/s)' '\theta (rad)' '\omega (rad/s)

' '\delta (rad)' 'T (Nm)'};
PlotSet(t,xP(kV,:), 'x label',tL, 'y label', yL,'figure title','Passing car

');

% Plot the radar results but ignore cars that are not observed
for k = 1:nAuto-1

j = 3*k-2:3*k;
sL = sprintf('Radar: Observed Auto %d',k);
b = mean(yP(j(1),:));
if(b ˜= 0)

PlotSet(t,[yP(j,:);vP(k,:)],'x label',tL,'y label', {'Range (m)' 'Range
Rate (m/s)' 'Azimuth (rad)' 'Valid'},'figure title',sL);
end

end

%% Implement MHT

% Covariances
r0 = dRadar.noise.ˆ2; % Measurement 1-sigma
q0 = [1e-7;1e-7;.1;.1]; % The baseline plant covariance diagonal
p0 = [5;0.4;1;0.01].ˆ2; % Initial state covariance matrix diagonal

% Adjust the radar data structure for the new state

315

CHAPTER 12 AUTONOMOUS DRIVING

dRadar.noise = [0;0;0];
dRadar.kR = [1;2];
dRadar.kV = [3;4];
dRadar.noLimits = 1;

ukf = KFInitialize('ukf','x',xRadar(1:4,1),'f',@RHSAutomobileXY,...
'h', {@AutoRadarUKF},'hData',{dRadar},'alpha'

,1,...
'kappa',2,'beta',2,'dT',dT,'fData',[],'p',diag(p0

),...
'q',diag(q0),'m',xRadar(1:4,1),'r',{diag(r0)});

ukf = UKFWeight(ukf);

[mhtData, trk] = MHTInitialize('probability false alarm', 0.01,...
'probability of signal if target present',

1,...
'probability of signal if target absent',

0.01,...
'probability of detection', 1, ...
'measurement volume', 1.0, ...
'number of scans', 5, ...
'gate', 20,...
'm best', 2,...
'number of tracks', 1,...
'scan to track function',@ScanToTrackAuto

,...
'scan to track data',dRadar,...
'distance function',@MHTDistanceUKF,...
'hypothesis scan last', 0,...
'remove duplicate tracks across all trees'

,1,...
'average score history weight',0.01,...
'prune tracks', 1,...
'create track', 1,...
'filter type','ukf',...
'filter data', ukf);

% Size arrays
%------------
m = zeros(5,n);
p = zeros(5,n);
scan = cell(1,n);
b = MHTTrkToB(trk);

t = 0;

% Parameter data structure for the measurements
sParam = struct('hFun', @AutoRadarUKF, 'hData', dRadar, 'r', diag(r0));

TOMHTTreeAnimation('initialize', trk);
MHTGUI;
MLog('init')
MLog('name','MHT Automobile Tracking Demo')

316

CHAPTER 12 AUTONOMOUS DRIVING

fprintf(1,'Running the MHT...');
for k = 1:n

% Assemble the measurements
zScan = [];

for j = 1:size(vP,1)
if(vP(j,k) == 1)

tJ = 3*j;
zScan = AddScan(yP(tJ-2:tJ,k), [], [], sParam, zScan);

end
end

% Add state data for the radar car
mhtData.fScanToTrackData.xR = xRadar(1:2,k);
mhtData.fScanToTrackData.vR = xRadar(3:4,k);
mhtData.fScanToTrackData.theta = xRadar(5,k);

% Manage the tracks
[b, trk, sol, hyp, mhtData] = MHTTrackMgmt(b, trk, zScan, mhtData, k, t)

;

% A guess for the initial velocity of any new track
for j = 1:length(trk)

mhtData.fScanToTrackData.x = xRadar(:,k);
end

% Update MHTGUI display
if(˜isempty(zScan) && graphicsOn)

if (treeAnimationOn)
TOMHTTreeAnimation('update', trk);

end
if(˜isempty(trk))

MHTGUI(trk,sol,'hide');
end
drawnow

end

% Update time
t = t + dT;

end
fprintf(1,'DONE.\n');

% Show the final GUI
if (˜treeAnimationOn)

TOMHTTreeAnimation('update', trk);
end
if (˜graphicsOn)

MHTGUI(trk,sol,'hide');
end
MHTGUI;

PlotTracks(trk)

317

CHAPTER 12 AUTONOMOUS DRIVING

Figure 12.10: Automobile demo car trajectories.

Figure 12.11 shows the radar measurement for car 3 which is the last car tracked. The MHT system
handles vehicle acquisition well.

The MHT graphical user interface (GUI) in Figure 12.12 shows a hypothesis with three tracks at the
end of the simulation. This is the expected result.

Figure 12.13 shows the final tree. There are several redundant tracks. These tracks can be removed
since they are clones of other tracks. This does not impact the hypothesis generation.

318

CHAPTER 12 AUTONOMOUS DRIVING

Figure 12.11: Automobile demo radar measurement for car 3.

Figure 12.12: The MHT GUI shows three tracks. Each track has consistent measurements.

319

CHAPTER 12 AUTONOMOUS DRIVING

Figure 12.13: The final tree for the automobile demo.

Summary
This chapter has demonstrated an automobile tracking problem. The automobile has a radar system that
detects cars in its field of view. The system accurately assigns measurements to tracks and successfully
learns the path of each neighboring car. You started by building a UKF to model the motion of an auto-
mobile and to incorporate measurements from a radar system. The UKF is demonstrated in a simulation
script. You then build a script that incorporates track-oriented MHT to assign measurements taken by the
radar of multiple automobiles. This allows our radar system to autonomously and reliably track multiple
cars.

You also learned how to make simple automobile controllers. The two controllers steer the automo-
biles and allow them to pass other cars. Table 12.2 lists the code used in this chapter.

320

CHAPTER 12 AUTONOMOUS DRIVING

Table 12.2: Chapter Code Listing

File Description
AddScan Add a scan to the data
AutoRadar Automobile radar model for simulation
AutoRadarUKF Automobile radar model for the UKF
AutomobileInitialize Initialize the automobile data structure
AutomobileLaneChange Automobile control algorithm for lane changes
AutomobilePassing Automobile control algorithm for passing
CheckForDuplicateTracks Look through the recorded tracks for duplicates
MHTAutomobileDemo Demonstrate the use of MHT for automobile radar systems
MHTDistanceUKF Compute the MHT distance
MHTGUI.fig Saved layout data for the MHT GUI
MHTGUI GUI for the MHT software
MHTHypothesisDisplay Display hypotheses in a GUI
MHTInitialize Initialize the MHT algorithm
MHTInitializeTrk Initialize a track
MHTLLRUpdate Update the log-likelihood ratio
MHTMatrixSortRows Sort rows in the MHT
MHTMatrixTreeConvert Convert to and from a tree format for the MHT data
MHTTrackMerging Merge MHT tracks
MHTTrackMgmt Manage MHT tracks
MHTTrackScore Compute the total score for the track
MHTTrackScoreKinematic Compute the kinematic portion of the track score
MHTTrackScoreSignal Compute the signal portion of the track score
MHTTreeDiagram Draw an MHT tree diagram
MHTTrkToB Convert tracks to a b matrix
PlotTracks Plot object tracks
Residual Compute the residual
RHSAutomobile Automobile dynamical model for simulation
RHSAutomobileXY Automobile dynamical model for the UKF
ScanToTrackAuto Assign a scan to a track for the automobile problem
TOMHTTreeAnimation Track-oriented MHT tree diagram animation
TOMHTAssignment Assign a scan to a track
TOMHTPruneTracks Prune the tracks
UKFAutomobileDemo Demonstrate the UKF for an automobile

321

CHAPTER 12 AUTONOMOUS DRIVING

References
[1] A. Amditis, G. Thomaidis, P. Maroudis, P. Lytrivis, and G. Karaseitanidis. Multiple hypothesis

tracking implementation. www.intechopen.com, 2016.
[2] S. S. Blackman. Multiple hypothesis tracking for multiple target tracking. Aerospace and Electronic

Systems Magazine, IEEE, 19(1):5–18, Jan. 2004.
[3] S. S. Blackman and R. F. Popoli. Design and Analysis of Modern Tracking Systems. Artech House,

1999.
[4] S. S. Blackman, R. J. Dempster, M. T. Busch, and R. F. Popoli. Multiple hypothesis tracking for

multiple target tracking. IEEE Transactions on Aerospace and Electronic Systems, 35(2):730–738,
April 1999.

[5] D. B. Reid. An algorithm for tracking multiple targets. IEEE Transactions on Automatic Control,
AC=24(6):843–854, December 1979.

[6] L. D. Stone, C. A. Barlow, and T. L. Corwin. Bayesian Multiple Target Tracking. Artech House,
1999.

[7] Matthew G. Villella. Nonlinear Modeling and Control of Automobiles with Dynamic Wheel-Road
Friction and Wheel Torque Inputs. PhD thesis, Georgia Institute of Technology, April 2004.

322

 www.intechopen.com

Index

�A
Adaptive control, 87

aircraft control, 237
F-16 model, 230–231
GPS, 207
longitudinal control of aircraft

demonstrate controller, nonlinear simulation,
259–261

differential equations, longitudinal motion,
225–231

enumerate all sets of inputs, 240–242
general neural net function, 242–246
implement and demonstrate PID control,
247–251

learning control, neural net, 236–240
limiting and scaling function, neural net
problem, 235–236

numerically finding equilibrium, 231–233
numerical simulation, 233–235
pitch dynamics, neural net, 256–259

model reference
demonstrate MRAC for rotor, 222–224
generating square wave input, 217–219
implement, 219–222

self-tuning, 208–216
ship steering, 261–266
sigma-pi neutral net, 237, 242
taxonomy, 208

AI. See Artificial intelligence (AI)
Aircraft control, 237
Aircraft Dynamics Symbols, 227
Aircraft pitch angle, 255–257, 260
Artificial intelligence (AI)

autonomous driving and target tracking, 88
Blocks World, 17–18
data mining, 19
expert systems, 19
knowledge-based systems, 19

limitations, 18
Lisp, 18
Logic Theorist (LT), 17, 18
machine learning, 21
military organizations, 22
neural networks, 17
Perceptrons, 18
technologies, 19
time sharing, 18
Towers of Hanoi, 18

Automobile autonomous passing control, 274–276
Automobile demo, final tree, 320
Automobile dynamics, 276–281
Automobile radar modeling, 269–273
Automobile simulation and Kalman filter, 281–288
Autonomous driving, 88

automobile autonomous passing control, 274–276
automobile dynamics, 276–281
automobile radar modeling, 269–273
automobile simulation and Kalman filter, 281–288
perform MHT on radar data, 288–320
planar automobile dynamical model, 277
RHSAutomobile function, 279
simulation, 312–320
track pruning, 308–312

Autonomous learning
AI (see Artificial intelligence (AI))
decision trees, 12–13
development, 22
expert systems, 13–14
learning control, 19–21
machine learning, 21
neural nets, 11–12
regression, 8–1
SVMs, 12
technologies, 22

AutoRadar function, 270
AutoRadarUKF, 272

© Michael Paluszek, Stephanie Thomas 2017
M. Paluszek and S. Thomas,MATLAB Machine Learning, DOI 10.1007/978-1-4842-2250-8

323

INDEX

�B
Bayesian network formalism, 19
Bayes’ theorem, 21, 175–176
Built-in radar demo, 273

�C
Chapman–Kolmogorov equation, 178
Commercial MATLAB software

MathWorks products, 25–27
Princeton Satellite Systems Products, 27

Computer Vision System Toolbox, 26
Control systems, 207

adaptive, 87
Kalman filters, 86–87

Conventional Kalman Filter, 180–189
Core Control Toolbox, 27

�D
Damped oscillator, 212
Data classification, 86
Decision trees, 12–13

ClassifierSets, 113–114
demo, 83, 84
description, 104
DrawBinaryTree, 116–119
generate data, 113–116
hand-made, 129–134
implementation

classification error, 121
entropy, 121
Gini impurity, 121–123
homogeneity measure, 120
information gain (IG), 120
parameters, 124
parent/child nodes, 124
testing function, 125–128

training and testing, 134–140
Drag polar, 227

�E
Expert systems, 13–14, 19
Extended Kalman filter, 189–190

�F
Face recognition, deep learning neural net, 86

activation functions, 90–92
convolutional layers

activation function, 100–102
Convolve.m, 98–100
grayscale cat images, 98

inputs and outputs, 102
mask, 98, 99

description, 111
fully connected layers, 104–106
grayscale photographs, 93–97
ImageNet, 93
image recognition, 109–111
layer types, 89–90
pooling, 103–104
probability, 106–108
sigmoid functions, 90
testing, 108–110

Fast Fourier transform (FFT), 208
FFTEnergy function, 211

�G
Gaussian or Normal distribution, 176
General Problem Solver (GPS), 18, 88, 207
GNU Linear Programming Kit (GLPK), 27, 301, 302
Graphical user interface (GUI)

controls, 74
description, 84
editing window, 75, 77
functions, 76–83
inspector, 75, 76
neural networks (see Neural networks)
second-order system simulation, 72–74
simdata, 75
template, 74, 75

GUI. See Graphical user interface (GUI)

�H
Hand-made decision tree, 129–134
Hidden Markov model (HMM), 177

� I, J
Interactive multiple-model (IMM) systems, 27

�K
Kalman filters, 86–87

automobile simulation, 281–288
family tree, 175
higher-model-noise matrix, 188
KFPredict, 185, 187
KFUpdate, 185, 187
lower-model-noise matrix, 189
RHSAutomobileXY, 276, 280
state estimator

conventional Kalman filter, 180–189
extended Kalman filter, 189–190

324

INDEX

mechanism, 176–180
problem, 170–175
solution, 175–176

system identification, 169
unscented kalman filter

for parameter estimation, 196–203
results for state estimation, 196
UKFPredict and UKFUpdate, 193–195
UKFWeight, 191–192

KFPredict, 185, 187
KFSim.m, 183
KFUpdate, 185, 187

�L
Learning control, 19–21
Learning machine, 6–7
Linear regression, 8–11

�M
Machine learning

autonomous learning methods, 8–14
capabilities, 4
data, 4
description, 3
LIBSVM, 29
memory, 4
models, 4–5
R, 28
scikit-learn, 28–29
spam filtering, 3
taxonomy, 7–8
training, 5

Massachusetts Institute of Technology (MIT), 18
MathWorks products

Computer Vision System Toolbox, 26
Neural Network Toolbox, 26
Statistics and Machine Learning Toolbox, 26
System Identification Toolbox, 27

MATLAB data types
cell arrays, 36–37
datastores, 40–41, 46–48
data structures, 37–38, 44–46
images, 38–40
large MAT-file, 43–44
matrices, 35–36
numerics, 38
sparse matrices, 42
tables and categoricals, 42–43, 48
tall arrays, 41–42

MATLAB expm function, 181
MATLAB function AutomobileInitialize, 282

MATLAB open-source tools
Deep Learn Toolbox, 28
Deep Neural Network, 28
MatConvNet, 28

Model reference adaptive control (MRAC), 219, 221,
223, 224

Monte Carlo method, 176
Multiple-hypothesis testing (MHT) system, 27, 274,

288–290, 292, 318, 319

�N
NASA Dryden Research Center, 225
Neural networks, 11–12, 85

generate images, defects, 145–148
multiple-digits, training data, 162–166
Neural Net tool

GUI, 147
NeuralNetMLFF, 150–153
NeuralNetTraining, 152–153
sign, sigmoid mag, step, log, tanh and sum,
147–150

output node
HSV colormap, 160
imagesc, 159
root-mean-square (RMS) error, 159
sigmoid function, 157
sign and logistic, 157
single-digit training error, 159
training window, 158
visualization, 160
weights and biases evolution, 159
weight values, 160, 161

pattern recognition, images, 145
testing, 161–162

Neural Network Toolbox, 26
Newton’s law, 169–170

�O
Online learning, 5
Optimization tools

CVX, 30
GLPK, 30
LOQO, 29
SeDuMi, 30
SNOPT, 29
YALMIP, 30

�P, Q
passState variable, 274
Pitch dynamics, 225
Planar automobile dynamical model, 277

325

INDEX

Princeton Satellite Systems Products
Core Control Toolbox, 27
target tracking, 27

Proportional–integral–derivative (PID) controller,
238, 260–264

�R
Recursive learning algorithm, 239–240
RHSAircraft, 228
RHSAutomobile function, 280
RHSAutomobileXY function, 276, 280
RHSOscillator dynamical model, 204, 210
RotorSim script, 221
RungeKutta, 221

�S
Semisupervised learning, 5
Ship steering simulation, 265, 266
Sigma-pi neutral network, 225, 235, 274
Sigmoid function, 234
Simulation script, 173
Software

autonomous learning, 25
commercial MATLAB, 25–27
MATLAB open-source tools, 28
optimization tools, 29–30

Spring-mass-damper system, 170, 172, 174, 209
Square wave, 217
Statistics and Machine Learning Toolbox, 26
Supervised learning, 5
Support vector machines (SVMs), 12, 21, 26
System Identification Toolbox, 26, 27

�T
Taxonomy, 7–8
Three-dimensional (3D) graphics

box, 65–67
data set, 69–71
planet, 67–69

Track pruning, 308
Two-dimensional (2D) graphics

custom diagrams, 58–64
line plots, 49–54
plot types, 54–58

�U, V, W, X, Y, Z
Unscented kalman filter (UKF), 269

for parameter estimation, 197–204
results for state estimation, 196
UKFPredict and UKFUpdate, 193–195
UKFWeight, 191–192

Unsupervised learning, 5

326

	Contents at a Glance
	Contents
	About the Authors
	About the Technical Reviewer
	Introduction
	Part I Introduction to Machine Learning
	Chapter 1:An Overview of Machine Learning
	1.1 Introduction
	1.2 Elements of Machine Learning
	1.2.1 Data
	1.2.2 Models
	1.2.3 Training
	1.2.3.1 Supervised Learning
	1.2.3.2 Unsupervised Learning
	1.2.3.3 Semisupervised Learning
	1.2.3.4 Online Learning

	1.3 The Learning Machine
	1.4 Taxonomy of Machine Learning
	1.5 Autonomous Learning Methods
	1.5.1 Regression
	1.5.2 Neural Nets
	1.5.3 Support Vector Machines
	1.5.4 Decision Trees
	1.5.5 Expert System

	References

	Chapter 2:The History of Autonomous Learning
	2.1 Introduction
	2.2 Artificial Intelligence
	2.3 Learning Control
	2.4 Machine Learning
	2.5 The Future
	References

	Chapter 3:Software for Machine Learning
	3.1 Autonomous Learning Software
	3.2 Commercial MATLAB Software
	3.2.1 MathWorks Products
	3.2.1.1 Statistics and Machine Learning Toolbox
	3.2.1.2 Neural Network Toolbox
	3.2.1.3 Computer Vision System Toolbox
	3.2.1.4 System Identification Toolbox

	3.2.2 Princeton Satellite Systems Products
	3.2.2.1 Core Control Toolbox
	3.2.2.2 Target Tracking

	3.3 MATLAB Open-Source Resources
	3.3.1 Deep Learn Toolbox
	3.3.2 Deep Neural Network
	3.3.3 MatConvNet

	3.4 Products for Machine Learning
	3.4.1 R
	3.4.2 scikit-learn
	3.4.3 LIBSVM

	3.5 Products for Optimization
	3.5.1 LOQO
	3.5.2 SNOPT
	3.5.3 GLPK
	3.5.4 CVX
	3.5.5 SeDuMi
	3.5.6 YALMIP

	References

	Part II MATLAB Recipes for Machine Learning
	Chapter 4:Representation of Data for Machine Learning in MATLAB
	4.1 Introduction to MATLAB Data Types
	4.1.1 Matrices
	4.1.2 Cell Arrays
	4.1.3 Data Structures
	4.1.4 Numerics
	4.1.5 Images
	4.1.6 Datastore
	4.1.7 Tall Arrays
	4.1.8 Sparse Matrices
	4.1.9 Tables and Categoricals
	4.1.10 Large MAT-Files

	4.2 Initializing a Data Structure Using Parameters
	4.2.1 Problem
	4.2.2 Solution
	4.2.3 How It Works

	4.3 Performing mapreduce on an Image Datastore
	4.3.1 Problem
	4.3.2 Solution
	4.3.3 How It Works

	4.4 Creating a Table from a File
	Summary

	Chapter 5MATLAB Graphics:
	5.1 Two-Dimensional Line Plots
	5.1.1 Problem
	5.1.2 Solution
	5.1.3 How It Works

	5.2 General 2D Graphics
	5.2.1 Problem
	5.2.2 Solution
	5.2.3 How It Works

	5.3 Custom 2D Diagrams
	5.3.1 Problem
	5.3.2 Solution
	5.3.3 How It Works

	5.4 Three-Dimensional Box
	5.4.1 Problem
	5.4.2 Solution
	5.4.3 How It Works

	5.5 Draw a 3D Object with a Texture
	5.5.1 Problem
	5.5.2 Solution
	5.5.3 How It Works

	5.6 General 3D Graphics
	5.6.1 Problem
	5.6.2 Solution
	5.6.3 How It Works

	5.7 Building a Graphical User Interface
	5.7.1 Problem
	5.7.2 Solution
	5.7.3 How It Works

	Summary

	Chapter 6:Machine Learning Examples in MATLAB
	6.1 Introduction
	6.2 Machine Learning
	6.2.1 Neural Networks
	6.2.2 Face Recognition
	6.2.3 Data Classification

	6.3 Control
	6.3.1 Kalman Filters
	6.3.2 Adaptive Control

	6.4 Artificial Intelligence
	6.4.1 Autonomous Driving and Target Tracking

	Chapter 7:Face Recognition with Deep Learning
	7.1 Obtain Data Online: For Training a Neural Network
	7.1.1 Problem
	7.1.2 Solution
	7.1.3 How It Works

	7.2 Generating Data for Training a Neural Net
	7.2.1 Problem
	7.2.2 Solution
	7.2.3 How It Works

	7.3 Convolution
	7.3.1 Problem
	7.3.2 Solution
	7.3.3 How It Works

	7.4 Convolution Layer
	7.4.1 Problem
	7.4.2 Solution
	7.4.3 How It Works

	7.5 Pooling
	7.5.1 Problem
	7.5.2 Solution
	7.5.3 How It Works

	7.6 Fully Connected Layer
	7.6.1 Problem
	7.6.2 Solution
	7.6.3 How It Works

	7.7 Determining the Probability
	7.7.1 Problem
	7.7.2 Solution
	7.7.3 How It Works

	7.8 Test the Neural Network
	7.8.1 Problem
	7.8.2 Solution
	7.8.3 How It Works

	7.9 Recognizing an Image
	7.9.1 Problem
	7.9.2 Solution
	7.9.3 How It Works

	Summary
	Reference

	Chapter 8:Data Classification
	8.1 Generate Classification Test Data
	8.1.1 Problem
	8.1.2 Solution
	8.1.3 How It Works

	8.2 Drawing Decision Trees
	8.2.1 Problem
	8.2.2 Solution
	8.2.3 How It Works

	8.3 Decision Tree Implementation
	8.3.1 Problem
	8.3.2 Solution
	8.3.3 How It Works

	8.4 Implementing a Decision Tree
	8.4.1 Problem
	8.4.2 Solution
	8.4.3 How It Works

	8.5 Creating a Hand-Made Decision Tree
	8.5.1 Problem
	8.5.2 Solution
	8.5.3 How It Works

	8.6 Training and Testing the Decision Tree
	8.6.1 Problem
	8.6.2 Solution
	8.6.3 How It Works

	Summary
	Reference

	Chapter 9:Classification of Numbers Using Neural Networks
	9.1 Generate Test Images with Defects
	9.1.1 Problem
	9.1.2 Solution
	9.1.3 How It Works

	9.2 Create the Neural Net Tool
	9.2.1 Problem
	9.2.2 Solution
	9.2.3 How It Works

	9.3 Train a Network with One Output Node
	9.3.1 Problem
	9.3.2 Solution
	9.3.3 How It Works

	9.4 Testing the Neural Network
	9.4.1 Problem
	9.4.2 Solution
	9.4.3 How It Works

	9.5 Train a Network with Multiple Output Nodes
	9.5.1 Problem
	9.5.2 Solution
	9.5.3 How It Works

	Summary
	References

	Chapter 10:Kalman Filters
	10.1 A State Estimator
	10.1.1 Problem
	10.1.2 Solution
	10.1.3 How It Works
	10.1.4 Conventional Kalman Filter

	10.2 Using the Unscented Kalman Filter for StateEstimation
	10.2.1 Problem
	10.2.2 Solution
	10.2.3 How It Works

	10.3 Using the UKF for Parameter Estimation
	10.3.1 Problem
	10.3.2 Solution
	10.3.3 How It Works

	Summary
	References

	Chapter 11:Adaptive Control
	11.1 Self-Tuning: Finding the Frequency of an Oscillator
	11.1.1 Problem
	11.1.2 Solution
	11.1.3 How It Works

	11.2 Model Reference Adaptive Control
	11.2.1 Generating a Square Wave Input
	11.2.1.1 Problem
	11.2.1.2 Solution
	11.2.1.3 How It Works

	11.2.2 Implement Model Reference Adaptive Control
	11.2.2.1 Problem
	11.2.2.2 Solution
	11.2.2.3 How It Works

	11.2.3 Demonstrate MRAC for a Rotor
	11.2.3.1 Problem
	11.2.3.2 Solution
	11.2.3.3 How It Works

	11.3 Longitudinal Control of an Aircraft
	11.3.1 Write the Differential Equations for the LongitudinalMotion of an Aircraft
	11.3.1.1 Problem
	11.3.1.2 Solution
	11.3.1.3 How It Works

	11.3.2 Numerically Finding Equilibrium
	11.3.2.1 Problem
	11.3.2.2 Solution
	11.3.2.3 How It Works

	11.3.3 Numerical Simulation of the Aircraft
	11.3.3.1 Problem
	11.3.3.2 Solution
	11.3.3.3 How It Works

	11.3.4 Find a Limiting and Scaling function for a Neural Net
	11.3.4.1 Problem
	11.3.4.2 Solution
	11.3.4.3 How It Works

	11.3.5 Find a Neural Net for the Learning Control
	11.3.5.1 Problem
	11.3.5.2 Solution
	11.3.5.3 How It Works

	11.3.6 Enumerate All Sets of Inputs
	11.3.6.1 Problem
	11.3.6.2 Solution
	11.3.6.3 How It Works

	11.3.7 Write a General Neural Net Function
	11.3.7.1 Problem
	11.3.7.2 Solution
	11.3.7.3 How It Works

	11.3.8 Implement PID Control
	11.3.8.1 Problem
	11.3.8.2 Solution
	11.3.8.3 How It Works

	11.3.9 Demonstrate PID control of Pitch for the Aircraft
	11.3.9.1 Problem
	11.3.9.2 Solution
	11.3.9.3 How It Works

	11.3.10 Create the Neural Net for the Pitch Dynamics
	11.3.10.1 Problem
	11.3.10.2 Solution
	11.3.10.3 How It Works

	11.3.11 Demonstrate the Controller in a Nonlinear Simulation
	11.3.11.1 Problem
	11.3.11.2 Solution
	11.3.11.3 How It Works

	11.4 Ship Steering: Implement Gain Scheduling for Steering Control of a Ship
	11.4.1 Problem
	11.4.2 Solution
	11.4.3 How It Works

	Summary
	References

	Chapter12:Autonomous Driving
	12.1 Modeling the Automobile Radar
	12.1.1 Problem
	12.1.2 How It Works
	12.1.3 Solution

	12.2 Automobile Autonomous Passing Control
	12.2.1 Problem
	12.2.2 Solution
	12.2.3 How It Works

	12.3 Automobile Dynamics
	12.3.1 Problem
	12.3.2 How It Works
	12.3.3 Solution

	12.4 Automobile Simulation and the Kalman Filter
	12.4.1 Problem
	12.4.2 Solution
	12.4.3 How It Works

	12.5 Perform MHT on the Radar Data
	12.5.1 Problem
	12.5.2 Solution
	12.5.3 How It Works
	12.5.4 Hypothesis Formation
	12.5.4.1 Problem
	12.5.4.2 Solution
	12.5.4.3 How It Works

	12.5.5 Track Pruning
	12.5.5.1 Problem
	12.5.5.2 Solution
	12.5.5.3 How It Works
	12.5.5.4 Simulation

	Summary
	References

	Index

